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Gélica E. Inteca bg, Claire Jean bh, Yakup Kaska u, Brice Didier Koumba Mabert bi,  
Amandine Lambot bj, Yaniv Levy p,bk, Ceri Lewis av,  
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Daniela Rojas-Cañizales by, Frank Rosell j, Enerit Sacdanaku cy,cr,  
Yessica M. Salgado Gallegos co, Cheryl Sanchez ae, Pilar Santidrián Tomillo cz,bo,  
David Santillo da, Denise Santos de Mora y, Maïa Sarrouf Willson db, Shir Sassoon p,bk,  
Emma A. Schultz ck, Felicity Shapland dc, Donna J. Shaver ai,  
Mandy W.K. So ce, Kelly Soluri ap, Guy-Philippe Sounguet dd,  
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da Greenpeace Research Laboratories, Innovation Centre Phase 2, University of Exeter, Devon, EX4 4RN, UK
db The Environment Society of Oman (ESO), Oman
dc Queensland Trust for Nature, GPO Box 162, Brisbane, Qld 4000, Australia
dd Aventures Sans Frontieres, BP 7248, Libreville, Gabon
de Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, USA
df Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 1105 SW Williston Rd, Gainesville, Florida 32601, USA
dg Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, Saint Kitts and Nevis
dh Asian School of the Environment, College of Science, Nanyang Technological University, Singapore, Singapore
di Estación Biológica Majahuas, Tomatlán, Jalisco, Mexico
dj Investigación, Capacitación y Soluciones Ambientales y Sociales A.C., Tepic, Nayarit, Mexico
dk Marine Zoology Unit, Cavanilles Insitute of Biodiversity and Evolutionary Biology, Parc Cientific, University of Valencia, Spain
dl Department of Biology, McGill University, Montreal, Canada
dm Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
dn Campamento Tortuguero El Naranjo, 6372100 Compostela, Nayarit, Mexico
do Florida Gulf Coast University Department of Biological Sciences, Florida, USA
dp Pendoley Environmental Pty Ltd, 12A Pitt Way, Booragoon, WA 6154, Australia

A R T I C L E  I N F O
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A B S T R A C T

Sandy coastal beaches are an important nesting habitat for marine turtles and a known sink for plastic pollution. 
Existing methodologies for monitoring the spatiotemporal patterns of abundance and composition of plastic are, 
however, disparate. We engaged a global network of marine turtle scientists to implement a large-scale sampling 
effort to assess microplastic abundance in beach sediments on marine turtle nesting beaches. Sand samples were 
collected from 209 sites spanning six oceans, microplastics (1-5 mm) were extracted through stacked sieves, 
visually identified, and a sub-sample verified via Fourier-transform infrared spectroscopy. Microplastics were 
detected in 45 % (n = 94) of beaches and within five ocean basins. Microplastic presence and abundance was 
found to vary markedly within and among ocean basins, with the highest proportion of contaminated beaches 
found in the Mediterranean (80 %). We present all data in an accessible, open access format to facilitate the 
extension of monitoring efforts and empower novel analytical approaches.
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1. Introduction

The annual global production of plastics grew from 250 million tons 
to 368 million tons between 2010 and 2020 (PlasticsEurope, 2020), 
which has contributed to the increasing ubiquity of plastic pollution in 
the marine environment (Barnes et al., 2009). Approximately 19–23 
million tons of plastic waste enters the marine environment every year, 
the majority of which is derived from land-based sources and coastal 
tourism, while an estimated 20 % is resultant from ocean-based sources, 
such as fishing (Andrady, 2011; Borrelle et al., 2020). Harmful impli-
cations of plastic debris in the marine environment include habitat 
degradation, transportation of invasive species, and entanglement and 
ingestion by marine fauna, which may lead to injury or death (Derraik, 
2002; Duncan et al., 2017; Nelms et al., 2016; Wright et al., 2013).

Additionally, small pieces of plastic, termed microplastics, are of 
concern as their smaller size means they can interact with a greater 
number of species and life stages, across trophic levels, and can 
permeate habitats (Botterell et al., 2019; Wright et al., 2013). Micro-
plastics are characterised as plastic particles <5 mm in size and can be 
further categorised into large microplastics (1–5 mm) and small 
microplastics (<1 mm; Andrady, 2011; Thompson et al., 2004). Primary 
microplastics are manufactured purposely for industrial or domestic use, 
for example: microbeads found in exfoliating facial scrubs, nurdle pellets 
used in the plastic industry, or microfibres released during the washing 
of synthetic textiles (Andrady, 2011; Barnes et al., 2009; Browne et al., 
2011). The majority of primary microplastics enter the ocean via do-
mestic and industrial drains, waste effluent from wastewater treatment 
works, and industrial spills (Napper et al., 2015; Napper and Thompson, 
2016). Secondary microplastics are formed from the repeated frag-
mentation of larger pre-existing plastic items through ultraviolet radi-
ation, mechanical abrasion, and weathering processes (Barnes et al., 
2009). Microplastics are now found to contaminate all marine ecosys-
tems including sea ice, sea surface, water column, deep-sea sediments, 
coral reefs, seagrass beds, mangroves, and beaches (Carson et al., 2011; 
Eriksen et al., 2014; Nor and Obbard, 2014; Peeken et al., 2018; Tekman 
et al., 2020; Walther and Bergmann, 2022; Woodall et al., 2014).

Beaches represent a major sink for microplastics with accumulation 
increasing over the last fifty years (Barnes et al., 2009; Carson et al., 
2011; Thompson et al., 2004). Coastal beaches can be transformed into 
microplastic “hot spots” due to their proximity to urban areas and 
physical processes, such as currents and winds, that aid their resus-
pension, transportation, and deposition (Barnes et al., 2009; Cózar et al., 
2014; Wu et al., 2020). Although existing literature allows some un-
derstanding of microplastic spatial distribution on beaches, significant 
gaps in locational knowledge remain (Balladares et al., 2023; Duncan 
et al., 2018; Jones et al., 2021; Novillo-Sanjuan et al., 2022; Zhang et al., 
2022). Robust quantitative spatial comparisons and investigations into 
temporal relationships in microplastic pollution are also scarce 
(Mesquita et al., 2022) and are hindered by discordant units of measure 
and the lack of a uniform methodology (Alvarez-Zeferino et al., 2020; 
Besley et al., 2017; Choi et al., 2021; Duncan et al., 2018; Mesquita et al., 
2022; Pagter et al., 2018). Quantifying and mapping the current extent 
of global microplastic distribution is key to understanding patterns of 
dispersal, subsequent ecological impacts, and in targeting strategic 
remediation intervention in polluted areas (Auta et al., 2017).

Knowledge of microplastic distribution could focus efforts to protect 
and preserve areas identified as key habitats for endangered species, 
such as marine turtles, that rely on these beach habitats for reproduction 
(Beckwith and Fuentes, 2018; Fuentes et al., 2023a, 2023b; Nelms et al., 
2016). The irregular properties of microplastics can disturb the natural 
beach environment, for example increasing sediment permeability, 
which flushes greater volumes of water through the beach (Carson et al., 
2011). In addition, plastics have a higher specific heat capacity than 
sand, especially dark pigmented plastics, which, when mixed with sed-
iments, may increase sand temperature leading to reduced nesting 
success (Andrady, 2011; Fuentes et al., 2023a, 2023b).

Given the implicit interest in beach microplastics for marine turtle 
biology and conservation, we set out to engage the marine turtle 
research community to conduct a global survey. In light of calls for 
standardisation (Bonita et al., 2023; Tiwari et al., 2023), we aimed to 
develop and apply an internationally viable methodology for sample 
collection, laboratory analysis, and reporting of microplastic (1–5 mm) 
abundance within beach sediments at a global scale. The methodology 
and consequent dataset generated are intended to provide an interna-
tional baseline of quantified global beach microplastic abundance, 
allowing collaborators the ability to extend the dataset and further in-
crease global understanding of microplastic distribution. We aimed to: 
1) quantify the composition, abundance, and spatial variation of 
microplastics on multiple beaches located across the world on which 
turtles nest, 2) investigate how these microplastics are distributed across 
nesting beaches, and 3) assess how microplastics vary spatially by par-
ticle type and polymer composition, which may, in time, help identify 
source locations and inform evaluation of ecological threat.

2. Materials and methods

2.1. Sample collection

Marine turtle conservation and research community email lists 
(CTURTLE and MEDTURTLE) were used to identify potential collabo-
rators willing and able to voluntarily collect sand samples from marine 
turtle nesting beaches around the world. Samples of beach sand were 
gathered from a total of 209 turtle nesting beaches from 39 different 
countries between August 2018 and January 2020. These locations 
spanned six continents and six ocean basins: the Mediterranean (n = 39), 
Indian Ocean (n = 44), North and South Atlantic n = 70, n = 20 
respectively), and North and South Pacific (n = 28, n = 8 respectively). A 
detailed methodology, labelling materials, and datasheets were sent 
electronically to the recruited collaborators to sample a nesting beach or 
beaches that best represented their local area (Supplementary Mate-
rials Fig. 1).

A standardized sampling methodology was followed at each nesting 
beach. Total beach length (TBL) was measured in kilometres and a total 
of 10 sites were sampled for sand on five transect lines located at 10 % 
TBL, 30 % TBL, 50 % TBL, 70 % TBL and 90 % TBL. Here, beach was 
defined by the local teams and was typically the marine turtle moni-
toring nesting site, which could vary in length, be a discrete bay or a 
subsection of a long sandy shore. At each transect point, one sample was 
taken from the “strand line” and the “turtle nesting line” (Supplemen-
tary Materials Fig. 1). The strand line was defined as the highest line of 
debris left by the retreating tide. In the case of there being more than one 
tide line visible due to tidal variation, the representative line chosen was 
the most recent line present. The turtle nesting line was approximated as 
the halfway point between the strandline and the outer limit of the 
beach within which turtles were found to nest, thus the medial nesting 
zone. Visual identification of 1) marked nests and 2) nesting pits, aided 
the approximation of this area (Duncan et al., 2018). Any nesting line 
sampling sites that were found to coincide with an active turtle nest 
were relocated two metres to the left or right to avoid disturbing the 
clutch. A metal spoon or trowel was used to remove the top 2 cm of sand 
in a 25 × 25 cm quadrat, a volume of approximately 1.25 L. To prevent 
post-collection fragmentation and contamination, any visually large 
macroplastic items (>5 mm) were removed and recycled where possible. 
At all sample locations, GPS coordinates were recorded in decimal de-
grees (longitude/latitude: World Geodetic System (WGS) 1984 format).

Sand samples were emptied into a glass bowl or beaker, weighed and 
sub-sampled to allow for practical postage and transportation to the 
University of Exeter, UK, for analysis. Sub-sampling was achieved by 
first mixing the sample with a metal spoon to prevent separation of the 
sand and plastic pieces, then 75 % of the sand (by weight or volume) was 
removed. The remaining 25 % was sent for further processing. The sand 
sample was air dried and deposited into Ziploc plastic bags for shipping. 
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Plastic bags were chosen due to the lightweight and durable qualities for 
international shipping.

2.2. Extraction of microplastics 1–5 mm

Sand samples were dried at 60 ◦C for 48 h and then processed indi-
vidually using a previously developed method (Lots et al., 2017). The 
dry weight of each sample was recorded to the nearest of 0.01 g and 
volume to nearest 10 mL, the sand was then passed through a sieve 
cascade of 5 mm and 1 mm to separate the microplastics in the size range 
1–5 mm only (Andrady, 2011). Visual identification with the aid of a 
magnifying glass and microscope (Leica, 6.3×–40×) allowed isolation of 
microplastics from organic material found in the range of 1–5 mm 
within each sample (Duncan et al., 2018). Suspected microplastics were 
picked out using tweezers and placed onto a glass fibre filter paper for 
further analysis.

2.3. Microplastic identification and classification

Filter papers were visually inspected under a microscope (Leica, 
6.3×–40×) for suspected microplastic particles. The criteria reported by 
(Norén, 2007) were used for the identification of synthetic items in this 
study: microplastic has no cellular or organic structure and should be 
consistent in thickness with no taper towards the end. Additionally, the 
fibres should demonstrate a three-dimensional bending and be clear or 
homogeneously coloured (blue, black, red, yellow (Norén, 2007)). 
Suspected microplastics were classified into five types of user and in-
dustrial plastics in accordance with categories defined by (Van Franeker 
et al., 2011): (1) Industrial plastic pellets (IND) included any small cy-
lindrical, granular, or spherically shaped pellets (known as nurdles, 
pellets, beads, or granules). User plastics (all non-industrial remains of 
plastic objects) cover the further four categories: (2) Foams (FOAM), 
which include synthetic foams, polystyrene, and foamed polyurethane 
in mattresses or construction foam. (3) Fragments (FRAG), degraded 
particles of hard macroplastics used in a large number of applications. 
(4) Sheetlike user plastics (SHE), broken down parts of plastics bags, 
sheets, and clingfilm. (5) Threadlike user plastics (THR), remains of 
ropes, nylon line, packaging straps, and clothing fibres.

Particles of large microplastic from each category were counted and 
the total amount in each category was weighed to nearest 0.0001 g for 
every sand sample. These measurements, in combination with the dry 
sand sample weight and volume, allowed multiple units of measure to be 
calculated. Plastic weight per kg of dry sediment (g kg− 1), plastic par-
ticle number per kg of dry sediment (particle kg− 1), plastic weight per 
m− 3 of dry sediment (g m− 3), and plastic particle number per m− 3 of dry 
sediment (particle m− 3).

2.4. Polymer identification

Suspected microplastic particles from a subsampled number of 
plastic contaminated beaches were analysed using a PerkinElmer 
Frontier Fourier-Transform Infrared (FTIR) spectrometer equipped with 
a universal diamond Attenuated Total Reflectance (ATR) attachment. 
Each suspected microplastic particle was manipulated using pre-cleaned 
forceps and placed onto the centre of the crystal surface (after pre-
cleaning the surface with analytical grade ethanol), before applying a 
consistent force using the sample clamp. FTIR spectra (mid-infrared) 
were obtained for each suspected microplastic particle by scanning in 
the wave number range 4000–650 cm− 1, at a resolution of 4 cm− 1, and 
acquiring a minimum of four scans per item (up to a maximum of 16 
scans per item for some samples in order to obtain clearer spectra). All 
spectra obtained were processed using PerkinElmer's Spectrum™ 10 
software (version 10.5.4.738), enabling post-acquisition background 
subtraction and normalisation of the data and subsequent comparison 
against a number of commercially available spectral libraries covering 
polymers, polymer additives and adhesives (adhes.dlb, Atrpolym.dlb, 

ATRSPE~1.DLB, fibres.dlb, IntPoly.spl, poly1.dlb, polyadd1.dlb and 
POLYMER.DLB). When analysing the FTIR output, readings with con-
fidence levels of 70 % or greater (Lusher et al., 2013) were considered a 
reliable specific spectral match. Those with a plastic polymer match of 
<70 % confidence were classified as unknown.

The selected beaches covered all five ocean basins in which sus-
pected microplastics were found. For beach sand samples with a total 
plastic count of <50 (n = 54), all plastic particles were analysed. For 
those samples with a plastic count of >50 (n = 3), an adapted method 
was used where a total of 100 plastic particles were selected for iden-
tification. For each of these beaches, the microplastic type with the 
greatest particle number was identified and all particles were divided 
equally into numbered 2 mL vials. These vials were selected using a 
random number generator and particles within were sampled until a 
total of 50 particles had been sampled. A total of 50 particles were then 
sampled randomly from the remaining microplastic types and the 
sample number of each type was calculated as a proportion.

2.5. Quality assurance/quality control

During sample collection in the field, participants were instructed to 
use glass and metal equipment where possible to reduce contamination. 
Any larger pieces of plastic (>5 mm) were removed from the sand 
sample to avoid post-collection fragmentation during transport. How-
ever plastic bags were used for ease of international transport. To take 
this potential source of contamination into account, all sample bags 
were checked to ensure that were intact and only microplastics 1–5 mm 
were investigated.

In the laboratory, standard microplastic quality control procedures 
were employed. These included thorough cleaning of all work surfaces 
with Chemgene HLD4 wipes, all equipment thoroughly rinsed twice 
with Milli-Q, wearing of a cotton lab coat, and keeping samples covered 
using tin foil when not in use. As small fibres were not included in the 
larger microplastics (1–5 mm) analysis, no atmospheric contamination 
control was collected.

2.6. Statistical and mapping analyses

All data were analysed using Microsoft Excel (Microsoft Corporation, 
2018) and the statistical software R (version 3.4.1, R Development Core 
Team, 2017). Data were tested for normality using a Shapiro-Wilk test 
and homogeneity of variance was assessed by using the Fligner-Killeen 
test.

Wilcoxon signed rank tests were used to assess the abundance of 
microplastics between the turtle nesting line and the strand line (for 
both particle number and weight). To integrate within-site variation, the 
plastic abundances of both the nest or strandline were averaged across 
the transect points, as the longshore plastic distribution will vary in 
different ways depending on a range of factors including orientation, 
geomorphology and prevailing currents and/or swells. A Kruskal Wallis 
test, with subsequent pairwise comparison using Dunn's post hoc test, 
was also used to compare the abundance of microplastics (both by 
weight and number) among ocean basins. A Pearson's Chi-squared test of 
contingency, with following Chi-squared post hoc test was used to assess 
differences in the relative presence/absence of microplastics across 
ocean basins. The significance level for all tests was set at α = 0.05.

Microplastic abundance and spatial pattern was mapped in the 
spatial analysis software: QGIS (QGIS.org, 2021. QGIS Geographic In-
formation System. QGIS Association). Geographical location of beaches 
sampled were provided as longitude and latitude (WGS1984). Land and 
coastline data were sourced from Natural Earth (https://www.naturalea 
rthdata.com/).
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3. Results

3.1. Overview

A total of 2062 sand samples from 209 turtle nesting beaches were 
gathered. For some beaches (n = 8) not all 10 samples were obtained due 
to beach topography preventing access to transect locations or damage 
during international transit (n = 18 transect samples across eight bea-
ches). The 209 nesting beaches spanned 39 countries, six continents, and 
six ocean basins: the Indian Ocean (n = 44), North Atlantic (n = 70), 

South Atlantic (n = 20), North Pacific (n = 28), South Pacific (n = 8), 
and the Mediterranean (n = 39). Suspected microplastics were found in 
samples from 94 of the 209 (45 %) beaches (Fig. 1a; Supplementary 
Table 1).

3.2. Within beach variation

Values on the beach strandline showed more variation than those on 
the nest line in microplastic abundance by both weight (g kg − 1) and 
particle number (particles kg − 1), but there was no significant 

Fig. 1. a) Location of beaches (n = 209) with microplastic present (red, n = 94) and beaches with no microplastic found (blue, n = 115); b) Microplastic abundance 
by particle number (particles kg− 1); c) Microplastic abundance (particles kg− 1) within the Caribbean, North-West Atlantic and Central Pacific; d) Microplastic 
abundance (particles kg− 1) within the Mediterranean; e) Microplastic abundance (particles kg− 1) along central and west Africa. See Supplementary Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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differences in the variances across the groups (Fligner-Killeen test, X2 
(1) 

= 2.24, P = 0.13 and X2 
(1) = 1.52, P = 0.22 respectively, (Supple-

mental Fig. 2a; Fig. 2b). However, whether samples were from the 
turtle nesting line or the strand line did not significantly affect the 
number of plastic particles (Wilcoxon signed-ranks, W = 8695, P = 0.9) 
or weight of plastic present (Wilcoxon signed-ranks, W = 8093, P =
0.35).

3.3. Spatial distribution and ocean basin variation

Suspected microplastics were found on 34.1 % of Indian Ocean 
beaches (n = 15), 79.5 % of Mediterranean beaches (n = 31), 42.9 % of 
North Atlantic beaches (n = 30), 39.2 % of North Pacific beaches (n =
11), 35 % of South Atlantic beaches (n = 7) and 0 % of South Pacific 
beaches (n = 8). Presence or absence of microplastics on a beach was 
found to vary significantly across oceans (Pearson's Chi-squared test of 
contingency, χ2

(5) = 28.71, P = 2.6 × 10− 5) (Fig. 2a). Following a Chi- 
squared post hoc test, the Mediterranean was found to have signifi-
cantly higher prevalence microplastics (P < 0.0005) in comparison to all 
other ocean basins.

There was a significant difference of microplastic weight (g kg− 1) 
between the ocean basins (Kruskal-Wallis test, X2

(5) = 26.5, P = 7.1 ×
10− 5), (Fig. 2b). Pairwise comparisons using Dunn's test indicate that the 
Mediterranean beaches had significantly more plastic by weight, (g 
kg− 1) than all other oceans (P < 0.05), other than the North Pacific (P =
0.06). The number of plastic particles (particles kg− 1) also varied 
significantly across the ocean basins (Kruskal-Wallis test, X2

(5) = 25.1, P 
= 1.3 × 10− 4), (Fig. 2c). Pairwise comparisons using Dunn's test indicate 
that the Mediterranean again had significantly more microplastics by 
particle number than all other ocean basins (P < 0.05), except the North 
Pacific (P = 0.059).

The top five beaches for average microplastic abundance by weight 
were: Well Bay Beach, Bermuda (0.57 g kg− 1), Sham Wan, Hong Kong 
(0.19 g kg− 1), Index Beach, Diego Garcia, Chagos Archipelago (0.03 g 
kg− 1), Kahuku, Hawaii (0.02 g kg− 1), and Gdor, Israel (0.02 g kg− 1). The 
same beaches were also the top five for average abundance by particle 
number: Sham Wan (433.5 particles kg− 1), Well Bay Beach (63.3 par-
ticles kg− 1), Index 18.5 particles kg− 1), Gdor (3.9 particles kg− 1), and 
Kahuku (3.1 particles kg− 1). Four of the five locations with the highest 
abundances, were islands and had the highest microplastics abundances 
for the North Atlantic, North Pacific and Indian Ocean. Three of these 
locations are remote islands surrounded by an expanse of ocean 
(Bermuda, Hawaii, Chagos Archipelago).

3.4. Types of microplastics

A total of 15,430 particles from all five categories of microplastics 
(industrial, foam, fragment, sheet, and thread) were found on the turtle 
nesting beaches. Two beaches dominated: Sham Wan beach, Hong Kong, 
contained a total of 11,176 particles of foam weighing 3.392 g, and Well 
Bay beach, Bermuda contained a total of 2271 fragment particles 
weighing 20.638 g. Of the five categories, fragments contributed to most 
of the microplastic weight (25.99 g), followed by foam (4.06 g), in-
dustrial (3.08 g), thread (0.37 g) and sheet (0.33 g) plastics (Supple-
mental Fig. 3a). In comparison by particle number, foam contributed 
the most with 12,202 particles, then fragment (2812 particles), followed 
by industrial (167 particles), sheet (125 particles) and thread (124 
particles) (Supplemental Fig. 3b). Despite removal of the two most 
contaminated beaches, Sham Wan and Well Bay, fragments still 
contributed the most weight (5.093 g) and foam was still the most 
numerous microplastic item found (1010 particles) (Supplemental 
Fig. 3c & d).

All five types of microplastics were identified within four of the 
ocean basins, with only industrial pellets and foam found in the South 
Atlantic. Between ocean basins, fragments were predominantly found 
within the North Atlantic and the Mediterranean (Fig. 3a). Whereas 

foam was most commonly found in the North Pacific and Indian Ocean 
(Fig. 3a). Industrial pellets were the most common microplastic type 
found in the South Atlantic, however there was a low number of 
microplastics identified.

3.5. Polymers identified

Analysis by FTIR spectroscopy on the subsampled isolated particles 
(n = 562) identified 88.3 % (n = 496) to be plastic polymers with a ≥ 70 
% confidence. Of the remaining particles, 10.7 % (n = 60) had a very low 
FTIR confidence of <50 % and were considered unspecified, 1.1 % (n =
6) were not plastic polymers.

Spectral matches identified polyethylene (PE, n = 242) as the most 
common polymer, accounting for 48.8 % of the plastic particles, fol-
lowed by polypropylene (PP) accounting for 26.2 % (n = 130) (Fig. 3). 
Other spectral matches identified the polymers polystyrene, polybutene, 
polydimethylsiloxane, polycyclohexylenedimethylene terephthalate as 
well as other ethylene derivatives. These were found to vary across 
particle type and ocean basin (Fig. 3).

Among the ocean basins, the greatest diversity of polymer types was 
found within the North Atlantic (Fig. 3b). Polyethylene was the most 
common polymer identified within the North Atlantic, South Atlantic 
and Mediterranean Sea. Whereas polystyrene was most commonly found 
within the Indian Ocean and North Pacific (Fig. 3b).

4. Discussion

This study is the first to investigate the abundance, composition, and 
spatial distributions of microplastics on turtle nesting beaches world-
wide. Through effective mobilisation and collaboration between scien-
tific professionals, we have generated important global baseline data 
with a simple methodology which is easily modified and could be further 
enhanced to develop and expand the dataset further.

4.1. Microplastic abundance and spatial distribution

We provide baseline microplastic concentrations for beach locations 
in each ocean basin and highlight that the Mediterranean had the 
highest average microplastic (1–5 mm) abundance. The identification of 
the Mediterranean, along with several island locations, as hotspots of 
microplastic debris is worthy of further investigation. Existing literature 
has reported high levels of microplastic pollution in the Mediterranean 
(Alomar et al., 2016; Cózar et al., 2014; Expósito et al., 2021; Lots et al., 
2017). The Mediterranean is a confined ocean basin with limited cur-
rents, tides, and waves which may geographically trap microplastics. 
This coupled with high population density and source input contribute 
to concentrated microplastic pollution (Sharma et al., 2021). Mapping of 
microplastic pollution within this study suggests a higher abundance on 
beaches located towards the eastern basin, although further sample 
collection from the central and western Mediterranean would better 
clarify this. Previous studies have also concluded that the eastern basin 
has comparatively higher levels of microplastic than the rest of the 
Mediterranean. Additionally, beaches in Cyprus (eastern Mediterra-
nean) have among the highest levels of microplastics thus far recorded 
globally (range: 637–131,939 particles m− 3) (Duncan et al., 2018). 
Oceanographic modelling showed the plastic particles identified in 
Duncan et al. (2018), also originated from the eastern basin, offering 
further validation to the robustness of the methodology and validity of 
Mediterranean microplastic variation found within this study (Duncan 
et al., 2018; Lots et al., 2017).

In addition to the Mediterranean, island locations were noted as 
microplastic hotspots. It is believed that oceanic movements around 
remote islands promote accumulation and trapping of microplastics as a 
result of their topography (Vogt-Vincent et al., 2023). Additionally, 
eddy systems that are generated by deep water islands are potentially 
responsible for concentrating and transporting microplastics (Brach 
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et al., 2018; Laffoley et al., 2011; Piedeleu et al., 2009). This may explain 
why some remote oceanic islands such as the Chagos Archipelago, 
Bermuda, and Hawaii hold some of the highest microplastics abun-
dances within this study. The identification of remote islands as 
microplastic hotspots is in alignment with several other local island 
studies that report high microplastic concentrations including the Gal-
apagos Archipelago (range: 0–74.6 particles kg− 1, size: 1–5 mm; Jones 
et al., 2021) and Hawaii (range: 700–1700 particles m− 2, size: 500 μm-5 
mm; Rey et al., 2021). Furthermore, remote island beaches are less likely 
to be cleaned in comparison to those that are easily accessible or are in 
tourist areas. This would naturally lead to a build-up of not just micro-
plastics, but larger macroplastic items which can then fragment into 
microplastics (Barnes et al., 2009).

4.2. Microplastic characterisation

Understanding the global abundance and spatial distribution of 
microplastic characteristics is crucial for identifying their main sources 
and routes to the marine environment, as well as the threats they pose to 
marine ecosystems. The five types of microplastic sampled (Industrial 
pellets, Foam, Fragments, Sheet, and Threads) varied in their abundance 
depending on whether they were reported by particle weight or particle 
number which may be a result of physical property differences. These 
differences highlight why it is important to record microplastic abun-
dance by both particle number and weight. Current modelling of 
microplastics within the marine environment has already demonstrated 
that physical properties of microplastics define their movement, distri-
bution, residency time, and rate of biofouling within the ocean 
(Chubarenko et al., 2016; Fang et al., 2018). Some microplastics have 
high bio-fouling rates where their surface composition attracts an 
accumulation of microorganisms, plants and algae causing them to sink 
(Chubarenko et al., 2016). In comparison, other microplastics have low 
densities and reside at the sea surface where widely variable wind, 
weather and current systems are responsible for their movement 
(Critchell and Lambrechts, 2016).

The most abundant particle type found was foam (78 %), followed by 
fragments (16 %). Microplastics (1–5 mm) classed as foam, such as 
synthetic sponges and polystyrene, are lightweight and easily broken 
down therefore contribute greatly to microplastic particle numbers (Fok 
and Cheung, 2015). Foam type particles accounted for 99.1 % of 
microplastics found on Sham Wan beach in Hong Kong. This may be 
explained by the large-scale use of expanded polystyrene across Hong 
Kong and southern China, a foam plastic used for the transport of many 
different foods (Chan and Not, 2023; Fok and Cheung, 2015). Hong 
Kong has previously been reported to have the highest microplastic 
pollution on record with 92 % of microplastics found being classed as 
polystyrene (PS) (Fok and Cheung, 2015). Other studies assessing 
microplastic abundances on beaches have also reported fragments as 

(caption on next column)

Fig. 2. Relative incidence of microplastics (1-5 mm) according to ocean 
basin IN = Indian (n = 44), MED = Mediterranean (n = 39), N ATL = North 
Atlantic (n = 70), S ATL = South Atlantic (n = 20), N PCF = North Pacific (n =
28), S PCF = South Pacific (n = 8). a) Percentage of beaches with microplastic 
present b) Box and whisker plots of the average microplastic weight on beaches 
in each ocean basin (Mean ± SD, IN =0.0009 ± 0.004 g kg− 1, MED = 0.001 ±
0.003 g kg− 1, N ATL = 0.009 ± 0.07 g kg− 1, N PCF =0.008 ± 0.04 g kg− 1, S 
ATL = 0.0003 ± 0.0008 g kg− 1, S PCF = 0 g kg− 1). Values >0.003 g kg− 1 were 
not shown here but were included within statistical analysis (IN: n = 2, MED: n 
= 3, N ATL: n = 6, N PCF: n = 2, S ATL: n = 1). c) Box and whisker plots of the 
average number of microplastic particles on beaches (particles kg− 1), cat-
egorised by ocean basin (Mean ± SD, IN =0.5 ± 2.8 particles kg− 1, MED = 0.2 
± 0.6 particles kg− 1, N ATL = 1 ± 7.6 particles kg− 1, N PCF =15.6 ± 81.9 
particles kg− 1, S ATL = 0.06 ± 0.1 particles kg− 1, S PCF = 0 particles kg− 1). 
Values >0.35 particles kg− 1 were not shown here but were included within the 
statistical analysis (IN: n = 2, MED: n = 2, N ATL: n = 5, N PCF: n = 2, S ATL 
= 2).
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one of the most common types of microplastic found (Duncan et al., 
2018; Novillo-Sanjuan et al., 2022; Zhang et al., 2022). This is unsur-
prising as hard plastics are the most commonly produced plastic items 
(Plastics Europe, 2022) and high concentrations of fragments would be 

consistent with the breakdown of larger plastic items that have been in 
the environment for an extended period of time.

Surprisingly, threads also known as fibres, were the least commonly 
found type of microplastic in our study. Previous research has 

Fig. 3. a) Composition of large microplastic (1–5 mm) types by ocean basins. b) Composition of large microplastic (1–5 mm) polymers between oceans (IN = Indian, 
MED = Mediterranean, N ATL = North Atlantic, N PCF = North Pacific, S ATL = South Atlantic). PCT = Polycyclohexylenedimethylene terephthalate. c) Composition 
of large microplastic (1–5 mm) polymer by microplastic type (IND = Industrial plastic pellets, FOAM = Foams, FRAG = Fragments, SHE = Sheetlike plastics, THR =
Threadlike plastics).
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highlighted fibres as the most prevalent anthropogenic particle identi-
fied not only within beach sediment samples (Bridson et al., 2020; Lots 
et al., 2017; Prata et al., 2020), but also other environmental samples, 
such as sea surface water (Botterell et al., 2022; Lindeque et al., 2020), 
water column (Bagaev et al., 2018; Vega-Moreno et al., 2021), and sea 
floor sediment (Cincinelli et al., 2021; Zhao et al., 2018). However, the 
lack of fibres found in our samples may be due to size of the micro-
plastics (1–5 mm) we investigated, with the other studies including 
much smaller microplastics <1 mm. The smooth surface and high length 
to width ratio of fibres make them difficult to capture, as they can easily 
pass through sieve meshes (Rochman, 2015). A future addition and 
enhancement to our protocol would be to include the use of Sediment- 
Microplastic Isolation (SMI) units, which uses the principle of density 
floatation to extract microplastics from sediments (Coppock et al., 
2017). In combination with rigorous contamination controls, the sepa-
rated media could then be filtered over a fine mesh size to retain fibres 
but also smaller sized microplastics.

4.3. Microplastic polymer identification

Understanding specific polymer composition of microplastics and 
their relative spatial distributions further aids understanding of their 
origin, transportation, and ecological threat (Schwarz et al., 2019). The 
specific polymers reported in this study include polyolefins (PE, PP and 
PB), polyesters (PCT), polystyrenes (PS) and silicone-based plastic 
polymers (PDMS). Global data reports the polyolefins (PE and PP) to be 
the most abundantly produced plastic, accounting for 46.2 % of global 
plastic demand (PlasticsEurope, 2022). It is now agreed that PP and PE 
are some of the most pervasive and invasive pollutants in our marine 
environment (Erni-Cassola et al., 2019; Schwarz et al., 2019). Studies 
are beginning to report polymer specific toxicological effects of plastic 
particles. For example, polyolefins have been found to leach toxic 
chemicals, such as antimony and bromide compounds, and polyesters 
have shown release additives and toxic gases, such as methane (Hope 
et al., 2020). These act cumulatively and as a result, microplastics with 
properties that induce more effects, subsequently present a higher 
ecological threat within the marine environment (Pagter et al., 2018; 
Pellini et al., 2018). Furthermore, these particles will be detrimental in 
comparatively smaller quantities (Syberg et al., 2015). Past research has 
already called for more detailed characterisation of physical and 
chemical properties of microplastics (Abbott and Sumaila, 2019). Un-
derstanding the combinations of properties that may exist will improve 
scientific evaluation of their specific ecological threat (Everaert et al., 
2020; Hope et al., 2020). Within the current literature there also is an 
absence of findings reporting spatial variation of marine plastic poly-
mers. The results of this study therefore provide a unique insight into 
variation of specific plastic polymers across ocean basins. PE and PP 
show overall dominance across all oceans except the North Pacific 
where PS is most abundant. Particles of foam commonly have the 
chemical composition of PS which explains why the North Pacific 
showed similar high abundances when reporting foam and PS, especially 
for Hong Kong.

4.4. Within beach variation

In addition to understanding the composition, abundance, and 
spatial variation of microplastics on turtle nesting beaches globally, we 
investigated how these microplastics are distributed across the nesting 
beaches. Our study found no significant variation between microplastic 
abundance and nest/strandline across the 209 beaches. This may be 
because there was limited topographical variation among the beaches in 
this study and biophysical and morphological elements, such as beach 
width, length, and slope, are thought to influence nesting preferences of 
marine turtles. Turtle nesting beaches are therefore less likely to be 
diverse in their general topography than non-nesting beaches 
(Yamamoto et al., 2012). A future consideration may be to consider 

geomorphology of beaches and whether sand is being sampled from a 
long sandy coastline or a discrete bay or pocket beach.

4.5. Implications for marine turtles

The lack of variation in microplastic abundance found between the 
strandline, an area often surveyed in marine debris surveys, and the 
turtle nesting line in this study suggest microplastic abundance has 
similar prevalence around turtle nests. The pollution levels found on 
sampled beaches within this study do not appear to be of immediate 
conservation threat in comparison to direct and indirect anthropogenic 
take, predation by domestic and invasive species, sex ratio change and 
reduced nesting success resulting from global climate change (Fuentes 
et al., 2023a, 2023b; Rees et al., 2016). However, beach sediments are 
now thought to act as microplastic sinks for wider oceans and levels of 
beach microplastics are only likely to increase (Barnes et al., 2009). A 
recent study by Sousa-Guedes et al. (2022) showed that under a high 
density of plastic debris (5 cm in size, average of 128 pieces/49 g per 
nest) there was a decrease in the emergence success of hatchlings and 
the synchronized emergence was affected, with more scattered and 
smaller groups emerging. Synchronized and larger group emergence 
increases the individual chance of survival, by reducing predation risk 
(Martins et al., 2021; Tucker et al., 2008). Whilst the exact mechanism 
for this impact is unknown, it has been hypothesised that the effects seen 
may be due to the plastics changing the substrate humidity and water 
holding capacity which when high may lead to fungal growth (Gleason 
et al., 2020) and when low, may lead to desiccation of the eggs (Carson 
et al., 2011). It could also be due to mechanical effects, whereby 
hatchlings heavily depend on the direct physical contact to stimulate 
final emergence (Sousa-Guedes et al., 2022). Crucially, in this study we 
are already reporting microplastics abundances on turtle nesting bea-
ches above the high-density level reported by Sousa-Guedes et al. 
(2022). Whilst it remains unclear what abundance of smaller plastic 
debris would be required to elicit the same effect; it is evident that 
microplastics pollution within beach sediments is only going to increase.

The growing evidence reporting detrimental effects from micro-
plastic exposure on all turtle life stages highlights the need to continue 
global monitoring of microplastic abundances on nesting beaches, while 
also expanding the dataset by employing the uniform methodology to 
further nesting beaches. Additional development of this study to include 
a nest depth sampling methodology would provide a more representa-
tive idea of the distribution of actual microplastic abundances at nest 
depth (Duncan et al., 2018). Further experimental studies investigating 
nest environments under experimentally controlled microplastic den-
sities are required to better understand the impacts of microplastic 
pollution, such as toxicology and desiccation (Beckwith and Fuentes, 
2018; Duncan et al., 2018; Fuentes et al., 2023a, 2023b).

4.6. Call for standardisation

Our method utilised a simple and low-cost beach sampling protocol, 
with visual identification of microplastics in combination with FTIR 
analysis, on a subset of suspected microplastics. Whilst FTIR analysis is 
costly, requires training and sample processing at a suitable facility, it is 
now becoming a minimum requirement for publication of microplastic 
research (STOTEN, 2024). This methodology has enabled the global 
spatial quantification of beach microplastics. Comparative studies are 
crucial to better understand the increasing abundance and global spatial 
distribution of microplastics, however, this requires standardisation 
within the field (Duncan et al., 2018). Comprehensive comparisons 
between studies are currently limited due to the range of methodologies, 
units reported, and particle size ranges employed in the literature 
(Bridson et al., 2020). For example, we are currently unable to rank 
beaches, ocean basins and countries by the numerical extent of their 
microplastic concentration because at least seven different units of 
measurement have been used during beach sediment sampling (Duncan 

Z.L.R. Botterell et al.                                                                                                                                                                                                                           Marine Pollution Bulletin 215 (2025) 117768 

10 



et al., 2018).
Disparity across all areas of methodology and units creates quanti-

tative study divergence, which further amplifies the inter-study variance 
in reported values of microplastic abundance. To avoid inter-study 
variability, methodologies should elaborate on how they avoided site 
selection bias which may consist of state of tide at time of sampling, 
recent weather conditions, beach morphology, and prior prevailing 
wind, and wave direction (Bosker et al., 2018; Dharmadasa et al., 2021; 
Prata et al., 2020; Wilson et al., 2021). The inclusion of various mea-
surements of sand and microplastics within samples provide an ability 
for dynamic change or development to reported units, which facilitates 
future dataset expansion. The current international dataset presented 
has also established the first clear and robust scale for beach micro-
plastic abundance, allowing individual locations to be ranked by the 
level of pollution present.

4.7. Future work

The addition of more beach samples to our baseline dataset is 
essential to the further spatial understanding of global microplastic 
distribution. Areas identified as devoid of data, for example coastal areas 
of the South Atlantic or South Pacific should be prioritised to ensure the 
dataset is fully representative and capable of monitoring global micro-
plastic pollution and the effects of any mitigation efforts. It would be 
beneficial to increase the volume of sand sampled to increase our 
detection threshold. Our current methodology detects microplastics 
(1–5 mm) when they are present at high concentrations. It is very 
possible that we have missing values especially on beaches that may 
have low microplastic abundances. This combined with sand being 
subject to sieving in situ, would greatly enhance the ability of a greater 
number of teams being engaged in the study, with larger sand volumes 
being processed. Contamination from very small microfibres (<1 mm) 
poses a constant challenge when conducting environmental microplastic 
fieldwork especially when assessing microplastics from the smallest size 
ranges (1 μm-1 mm). The addition of contamination controls during the 
collection and processing phases would allow for analysis of smaller 
microplastics (<1 mm) and provide further insights into microplastic 
characteristics, their abundance and distribution. Initial work looking at 
sand from a subsample of sites found small microplastics to be ubiqui-
tous. We did not present them here as without contamination control, it 
was inconclusive as to their origin.

Collaboration between individuals and projects within an interna-
tional scientific community has been of paramount importance in 
generating the dataset presented within this study. This could not have 
been achieved individually within a similar study period and emphasises 
the power of collaborative work. The method in this study offers further 
opportunities for microplastic quantification research. Available tem-
poral studies are currently limited. However, if this study is repeated 
over time intervals, in previously sampled areas, it is possible to initiate 
a global temporal monitoring program and aid our understanding of 
microplastic movements (Ryan et al., 2009). It would also highlight 
possible seasonal trends that would not be recognised within this study 
at this time. The continued monitoring of microplastic concentrations 
found at field sites, combined with a better understanding of plastic 
inputs into the environment will help to develop more accurate future 
microplastic concentrations, which is essential for the development of 
effective risk assessments (Botterell et al., 2023).

5. Conclusion

In summary, this study has shown that 45 % (n = 209) of global turtle 
nesting beaches had microplastics 1–5 mm in size present. The Medi-
terranean was the most contaminated ocean basin and based on limited 
sampling, the South Pacific was least affected. Additionally, some 
remote island beach locations were also identified as microplastic hot-
spots. The predominant microplastic types identified were foam and 

fragments, with polyethylene being the most common polymer identi-
fied by FTIR analysis. Through collaboration with the international 
marine turtle conservation community, this investigation has effectively 
established a dataset for microplastics (1–5 mm) that is globally com-
parable. Monitoring and further investigation of larger sample sizes 
could improve the completeness of our global knowledge of micro-
plastics and guide the regulation of widespread pollution.
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