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A B S T R A C T

Documenting how human pressure on wildlife changes over time is important to minimise potential adverse
effects through implementing appropriate management and policy actions; however, obtaining objective
measures of these changes and their potential impacts is often logistically challenging, particularly in the
natural environment. Here, we developed a modular stochastic model that infers the ratio of actual viewing
pressure on wildlife in consecutive time periods (years) using social media, as this medium is widespread
and easily accessible. Pressure was calculated from the number of times individual animals appeared in
social media in pre-defined time windows, accounting for time-dependent variables that influence them (e.g.
number of people with access to social media). Formulas for the confidence intervals of viewing pressure
ratios were rigorously developed and validated, and corresponding uncertainty was quantified. We applied
the developed framework to calculate changes to wildlife viewing pressure on loggerhead sea turtles (Caretta
caretta) at Zakynthos island (Greece) before and during the COVID-19 pandemic (2019–2021) based on 2646
social media entries. Our model ensured temporal comparability across years of social media data grouped
in time window sizes, by correcting for the interannual increase of social media use. Optimal sizes for these
windows were delineated, reducing uncertainty while maintaining high time-scale resolution. The optimal
time window was around 7-days during the peak tourist season when more data were available in all three
years, and >15 days during the low season. In contrast, raw social media data exhibited clear bias when
quantifying changes to viewing pressure, with unknown uncertainty. The framework developed here allows
widely-available social media data to be used objectively when quantifying temporal changes to wildlife
viewing pressure. Its modularity allowed viewing pressure to be quantified for all data combined, or subsets
of data (different groups, situations or locations), and could be applied to any site supporting wildlife exposed
to tourism.
1. Introduction

As awareness of the ecological, economical, and intrinsic value of
wildlife has grown in recent decades (König et al., 2020), demand
to observe animals in their natural environment and consequently
wildlife viewing has also risen (Moorhouse et al., 2015). To address
any potential adverse effects that this activity has on wild animals
(i.e., elevated risk of injury from boat collisions during viewing or
behavioural changes), documentation of its impacts are widespread in
both terrestrial and marine environments (Burgin and Hardiman, 2015;
Larson et al., 2016; König et al., 2020). However, wildlife viewing pres-
sure is not consistent within or across years (Moorhouse et al., 2015),
particularly in areas supporting seasonal migrants, such as breeding

∗ Corresponding author at: School of Mathematical Sciences, Queen Mary University of London, London E14NS, UK.
E-mail address: k.papafitsoros@qmul.ac.uk (K. Papafitsoros).

humpback whales and sea turtles. Even within the same population,
animals are not randomly distributed in time or space, with certain
individuals (in hotspots or residents) being disproportionately targeted
(Semeniuk et al., 2009; Christiansen and Lusseau, 2014). Another
source of temporal fluctuation in viewing pressure is due to changes
on the numbers of actual human observers. This issue which has been
exemplified by the recent COVID-19 pandemic via the unprecedented
absence of ecotourism in hotspots globally (Rutz et al., 2020; Bates
et al., 2021; March et al., 2021; Schofield et al., 2021). As a result,
analytical approaches that capture temporal variation in both animal
presence and viewing records are required to quantify viewing impacts
on at multiple scales, from individuals to groups and populations
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(Moorhouse et al., 2015; Birk et al., 2020; Western et al., 2020; Marion
et al., 2020). By understanding how these pressures change within and
across years, relevant actions that promote conservation efforts and
mitigate disturbance could be implemented.

The rise of social media, image sharing and the widespread use
of mobile phone cameras has generated an extra level of pressure
on wildlife, through huge demand for ‘‘selfies’’ and ‘‘close-up’’ images
with animals, resulting in close encounters between humans and wild
animals that have potential negative impacts (Semeniuk et al., 2009;
Christiansen and Lusseau, 2014; Lenzi et al., 2020; Papafitsoros et al.,
2021; Molyneaux et al., 2021; Van Hamme et al., 2021). Yet, because
viewing wild animals is intrinsically linked with taking photographs
and videos, social media is also being explored as a useful tool to inform
conservation science (Dickinson et al., 2012; Di Minin et al., 2015;
Toivonen et al., 2019). In particular, wildlife imagery initially uploaded
online for purposes other than facilitating conservation studies (e.g.
to social media to share personal experiences) is being increasingly
applied for science under various names such as conservation culturomics
(Ladle et al., 2016), passive crowdsourcing (Ghermandi and Sinclair,
2019), iEcology (Jarić et al., 2020), and passive citizen science (Edwards
t al., 2021). Such data are being used to quantitatively evaluate inter-
ctions between humans and wildlife in both terrestrial (e.g. mountain
orillas (Gorilla beringei) Van Hamme et al., 2021, orangutans (Pongo
belii) Molyneaux et al., 2021) and marine environments (e.g. sea tur-
les (Caretta caretta) Papafitsoros et al., 2021, monk seals (Neomonachus
chauinslandi) Sullivan et al., 2019).

This application of social media has several advantages over typical
esearcher-based approaches. For instance, to measure how ecotourism
laces pressure on wildlife, simple counts of tourist numbers frequent-
ng focal sites (or subset of tourists participating on organised activities)
o not necessarily reflect the actual (true) viewing pressure that ani-
als (individuals or groups) are subjected to within a larger population,

s operator strategies and animal behaviour and movement patterns
lso have an effect (Semeniuk et al., 2009; Christiansen and Lusseau,
014). This issue becomes even more challenging when considering
onorganised and nonregulated activities where encounters are often
ncidental (Papafitsoros et al., 2021). In comparison, counting the
umber of times that animals appear on social media in given time
rames could be used to quantify actual viewing pressure on animals
ore objectively, particularly when exploring how pressure changes

ver time (seasons/years).
However, systematic approaches to make such comparisons over

ime based on social media are lacking (Barros et al., 2019; Rice and
an, 2021). Such approaches are needed, because the frequency at
hich animals are recorded is influenced by the location and number
f people accessing social media platforms, plus the availability of cam-
ras and smartphones (Toivonen et al., 2019; Ghermandi and Sinclair,
019). For instance, the number of Instagram (a popular sharing social
edia platform) users globally has risen from around two million in
010 to more than one billion in 2020 (https://www.statista.com/
tatistics/183585/instagram-number-of-global-users/). Consequently,
ny change in pressure based on comparing the number of animal
mages uploaded to this platform must be corrected to account for this
ncrease. Challenges also exist because the flow of information from

given human–animal interaction to it appearing in social media is
overned by many factors (Tenkanen et al., 2017; Jarić et al., 2020;
dwards et al., 2021). Not all observed animals are captured on camera,
or do all those captured on camera actually appear on social media
Tenkanen et al., 2017). Ultimately, the number of human–animal
ncounters appearing on social media tend to be several orders of
agnitude lower than the actual number originally observed (Wood

t al., 2013; Papafitsoros et al., 2021). Even when social media data can
e compared temporally (i.e. records are consistent), certainty varies
ith the number of data samples (observations), with confidence being
igher when sightings are higher (consistency of an estimator, Lehmann
2

nd Casella, 2006). Thus, it is important to model the uncertainty that
xists in this flow of information, and establish the minimum number
f social media records required to ensure interpretations have high
onfidence. Such models are currently absent from the literature for
ocial media, but parallels exist for in other fields (Huang et al., 2017).

Here, we developed a rigorous and mathematically consistent frame-
ork to quantify temporal changes in the number of human–animal
ncounters using social media data. We focused on quantifying uncer-
ainty in these changes. We then applied the framework to quantify
hanges to wildlife viewing pressure on loggerhead sea turtles (Za-
ynthos Island, Greece) during the course of COVID-19 global travel
isruption (2019 to 2021). Zakynthos Island supports both a major
opulation of breeding loggerheads, which are seasonally present from
ay to August, and a small population of year-round resident turtles

immature and adults). The turtles frequenting the island are sub-
ected to intense ecotourism viewing pressure from May to October
Papafitsoros et al., 2021). This sea turtle population forms part of the
editerranean loggerhead sea turtle population, which is considered

onservation dependent, based on data assimilated from long-term
onservation efforts (Casale et al., 2018). However, because our frame-
ork only requires targeted social media mining for photographs and
ideos of animals in a given focal area, it could be widely applied
o other sites where humans interact with and photograph wildlife,
rovided these interactions are accompanied by a substantial, con-
istent and timely social media activity. The information provided
y our model could be used, for instance, by management agencies
f wildlife habitats. We anticipate that as the data mining of social
edia becomes automated, this information could be made available

n real time, informing managers of noticeable changes to viewing
ressure of specific threatened animal groups, prompting action to
itigate disturbance (i.e. dynamic management). Through increasing

he reliability of using social media-based methods to quantify wildlife
ourism pressure, our model facilitates the integration of this global
itizen-based phenomenon as a science tool to identify and mitigate
dverse effects of human–wildlife interactions.

. Methods: Model development and validation

.1. Real and detected viewing pressures

We developed a rigorous method to compare human viewing pres-
ure on wildlife in a given year against other years, based on detected
bservations from social media. The following parameters were, first,
efined:

Real viewing pressure Vreal: number of times that an animal at a
focal site is observed by a human. It is difficult to obtain this value
because it requires continuous observation of the same animal(s).
Photographs of individuals Vphoto: number of times that a photo-
graph/video of an animal at a focal site is recorded. By definition,
this number is smaller than or equal to Vreal.

• Detected viewing pressure Vdetected: number of times for which
a person recorded an image (photograph/video) of an animal and
uploaded that image on a public social media account together with
detectable identifiers, e.g. ‘‘hashtags’’ (‘‘#’’). We used the term entry
for such images. By definition this number is smaller than or equal to
Vphoto.

These parameters were evaluated for all animals that were observed
across all situations, locations and years. However, certain animal
groups, observation conditions, locations or years could also be sep-
arated to evaluate different types of pressures at different temporal
scales. We focused on comparing Vreal across years using the cor-
responding Vdetected, which was assumed to be known, following a

targeted search in social media.

https://www.statista.com/statistics/183585/instagram-number-of-global-users/
https://www.statista.com/statistics/183585/instagram-number-of-global-users/
https://www.statista.com/statistics/183585/instagram-number-of-global-users/
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Fig. 1. Relationship of Vreal, Vphoto, Vdetected with P1, P2, P3. Left: actual observation event of an animal, contributing to Vreal. Middle: observer takes a photograph of the animal
with probability P1, contributing to Vphoto. Right: Given this, the photograph appears on a public social media account with detectable hashtags and probability P2 ×P3, contributing
to Vdetected.
2.2. Transition probabilities

To link Vdetected and Vreal, we delineated three transition probabilities.
When a single observation of an individual animal is made (i.e. one
person observes one animal):

P1 is the probability that the person took at least one photograph/
video of this animal.

P2 is the probability that the person has a public social media
account.

P3 is the probability that given that the tourist has a public social
media account, they uploaded a photograph/video of the animal
to it with detectable identifiers.

The relationship of Vreal, Vphoto, Vdetected with P1, P2, P3 is shown in
Fig. 1. Furthermore, Fig. 2 presents a schematic of the relationship
between the real and detected viewing pressure, as well as the role of
the confidence interval formula (4) described in the next sections.

From the definitions above it follows that the approximate value of
Vphoto is equal to:

Vphoto ≃ P1 × Vreal. (1)

Thus, P1 is used to transfer from Vreal to Vphoto. To transfer from Vphoto
to Vdetected, we separated the transition probability into whether the
photographer (1) has a public social media account and (2) uploaded
the photograph/video with detectable identifiers. The probability that
both components are satisfied is equal to P2 × P3. Thus, P2 × P3 is used
to pass from Vphoto to Vdetected, meaning that Vdetected is approximately
equal to:

Vdetected ≃ P2 × P3 × Vphoto. (2)

By combining Eqs. (1) and (2) we end up with Vdetected being approxi-
mately equal to

Vdetected ≃ P1 × P2 × P3 × Vreal = P × Vreal. (3)

where P denotes the product of the three probabilities. In other words,
P is the probability that all the three following events occur, given that
an animal is observed by a human: (i) the observer took at least one
photograph/video of the animal (ii) the observer has a public social
media account (iii) the observer uploaded the photograph/video to that
public social media account with detectable identifiers (given that the
observer has a public social account). These three events will occur with
probabilities P1, P2, P3 respectively and they occur simultaneously with
probability P ∶= P1 × P2 × P3. Some assumptions must be made on the
transition probabilities P ,P ,P :
3

1 2 3
ID-independence assumption: We assumed that P1,P2,P3 do not de-
pend on the identity of the observed animal. For instance, certain
individuals are not expected to have higher or lower probabilities of
being photographed/videoed than other individuals or for these images
to be uploaded on social media.

Time-independence assumption: We assumed P1,P3 would be constant
across time. For instance, given that a person observes an animal, this
person is as likely to record the viewed animal on a device with a
camera in all years. The assumption of time independence for P1 im-
plies that the availability of photographic equipment (mobile phones,
cameras, underwater cameras) remains (approximately) stable across
the selected timeframe.

In contrast, P2 is considered time dependent because social media
users increase annually, and so the probability that a person has a social
media account increases, thus we used the notation Pyear1

2 , Pyear2
2 etc.

Condition of observation-independence assumption: We assumed that
P2 and P3 do not depend on the condition in which the observation
took place. For instance, a person would upload photographs/videos
with the same probability, regardless of the condition (where or how) in
which the observation took place at the focal site. Different conditions
could be locations (underwater vs. boat based for marine life), means
of recording (normal cameras vs. drones), or time of the day (day-
time vs. nighttime). However, in certain situations (i.e. when viewing
marine wildlife), P1 is likely condition-dependent. This is because,
more images are obtained from boat viewings compared to underwater
viewings, as devices with cameras that can be used underwater tend
to be more expensive and so used less. Thus, we used the notation

Pcondition1
1 ,Pcondition2

1 etc.
Outcome of viewings-independence assumption: We assumed that the

viewing of an animal resulting in a photograph/video that is uploaded
to social media would not depend on the corresponding event of a
different viewing (i.e. each viewing is independent). For instance, when
two viewings are done by two different persons, it can be assumed
that they act independently. However, if the same person observes
two different animals, this independence is lost. For instance, if that
person uploads a photograph/video of the first animal, it is more likely
that they upload a photograph/video for the second animal as well.
Hence, for this assumption to be true, a person would have to observe
just one animal, which is not necessarily the case. This assumption
can be validated by quantifying the number of entries uploaded to
unique social media accounts. At sites where this is not the case
(i.e. where a single person can view multiple animals), the model must

be interpreted with caution.
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Fig. 2. Schematic illustrating the real and detected viewing pressures for an individual animal, in a specific 2-year time period. During this time period in Year 1, the animal
is observed 40 times but only 9 of these encounters are uploaded on social media. In comparison, in the same time period in Year 2, the same individual is observed 24 times
of which 6 are uploaded on social media. Only the detected viewing pressures in the two years (vyear1

detected = 9 and vyear2
detected = 6 respectively) are known. Our model uses the ratio

of the detected viewing pressure vyear2
detected

vyear1
detected

to estimate the ratio of the real viewing pressure Vyear2
real

Vyear1
real

. The estimate is corrected accounting for fluctuations in social media users and a
confidence interval of this estimation is calculated via formula (4).
2.3. Linking detected viewing pressure to real viewing pressure and related
uncertainty quantification

The previous section argued that Vdetected equals approximately
P×Vreal, where P ∶= P1 ×P2 ×P3. To be more precise from a modelling
perspective, Vreal is a deterministic quantity, whereas Vdetected is a
random variable that follows the binomial distribution with parameters
Vreal and P, denoted as Bi(Vreal,P). This means that Vdetected is the
number of successes of Vreal independent experiments each of which
has success probability P. Here, success is defined as the event in
which a photograph/video was taken and uploaded with hashtags, and
experiments are defined as animal viewings. We stated that Vdetected is
approximately equal to P×Vreal. This is because P×Vreal is the expected
value of Vdetected; however because Vdetected is distributed around its
expected value (with nonzero variance), its true value is not known.
We can only observe its realisation, denoted by vdetected, which is the
number of detected images in social media. This distinction is important
from a modelling point of view. The conceptual difference between
Vdetected and vdetected can be understood, if a hypothetical experiment is
‘‘repeated’’ by ‘‘going back in time’’. Even though the probability that
Vdetected belongs to a certain interval remains the same, vdetected (its
realisation) would differ due to randomness (in practice also due to
unquantified, difficult to track, factors).

Given some detected entries in two years, vyear1
detected and vyear2

detected,
referring to a given time window, condition of observation and group
of animals, we wanted to quantify the uncertainty of the corresponding
real viewing pressure change, i.e. how much larger/smaller Vyear2

real is
compared to Vyear1

real . Given an acceptable level of error 0 < 𝛼 < 1, we
aimed to find an ‘‘interval 𝐼 ’’, such that:

Vyear2
real

Vyear1
real

belongs to the interval 𝐼 with probability 1 − 𝛼.

Specifically, we showed that the confidence interval 𝐼 is defined by the
following inequalities

vyear2
detected

vyear1
detected

Pyear1

Pyear2
𝑒
−𝑘

√

1
V

year2
detected

+ 1
V

year1
detected ≤

Vyear2
real

Vyear1
real

≤
vyear2

detected

vyear1
detected

Pyear1

Pyear2

× 𝑒
𝑘
√

1
V

year2
detected

+ 1
V

year1
detected , (4)

where, 𝑘 is the value of the quantile function of the standard normal
distribution at level 1 − 𝛼

2 . For instance for 𝛼 = 0.05, which we fix
henceforth, we have 𝑘 = 1.96. Supplementary material A shows how
4

the confidence interval (4) was derived, and associated justification. In
brief, the confidence interval was derived using three assumptions: (i)
relatively large values for vyear1

real , vyear2
real , (ii) relatively small values for

Pyear1 , Pyear2 and (iii) the observed values vyear1
detected, vyear2

detected being close
to their respective means. Supplementary material B explains these
assumptions.

The confidence interval (4) implies the point estimate (most proba-
ble value) for real pressure ratio Vyear2

real ∕Vyear1
real is equal to

vyear2
detected

vyear1
detected

Pyear1

Pyear2
, (5)

which is natural, as it is simply the ratio of the detected pressure
vyear2

detected∕v
year1
detected adjusted by the ratio of probabilities Pyear2∕Pyear1 .

Even though the true probabilities Pyear1 and Pyear2 are not known, due
to our assumptions, we estimate their ratio as

Pyear2

Pyear1
=

Pyear2
1 Pyear2

2 Pyear2
3

Pyear1
1 Pyear1

2 Pyear1
3

=
P1P

year2
2 P3

P1P
year1
2 P3

=
Pyear2
2

Pyear1
2

≈
Nyear2

platform

Nyear1
platform

, (6)

that is, as the ratio of the global number of users of the fixed social
media platform in consecutive time frames, i.e. number of users in year1
and year2, denoted by Nyear1

platform and Nyear2
platform, respectively.

2.4. A simple illustration of the confidence interval

To illustrate the confidence interval (4), we provide an example
with v2021detected = 200 and v2020detected = 100 as the number of detected
entries. If we assume that the number of social media users did not
change, (i.e. Nyear1

platform = Nyear2
platform), then the confidence interval based

on formula (4) is calculated as

1.57 ≤
V2021

real

V2020
real

≤ 2.54.

If the number of observations increases (e.g. v2021detected = 2000 and
v2020detected = 1000) then the new confidence interval shrinks to

1.85 ≤
V2021

real

V2020
real

≤ 2.16.

In both cases, the confidence interval lies around the point estimate
v2021detected∕v

2020
detected = 200∕100 = 2 due to (5). As the number of entries

increases, the confidence interval shrinks, increasing its robustness and
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Fig. 3. Left: Comparison of our estimated confidence interval (4) and the true confidence interval computed via simulations for vyear1
detected and vyear2

detected between 1 and 50, using IoU
(intersection over union as the similarity metric). Right: IoU of estimated and true confidence intervals as a function of the minimum number of detected entries, with Minimal
vdetected = minimum(vyear1

detected , v
year2
detected).
confidence we have in it. However, if the number of social media users
doubled, then the confidence interval would shrink by a factor of two
to

0.93 ≤
V2021

real

V2020
real

≤ 1.08.

This is logical as the same real pressure with two times the number of
Instagram users should result in twice as many entries and consequently
double the observed pressure.

2.5. Confidence interval validation

Because three additional assumptions were required to derive the
confidence interval (4) we verified its accuracy and validated its use.
We computed the confidence interval (4) for a series of vyear1

detected and
vyear2

detected and compared the outputs with the true confidence inter-
val, computed via simulations. Supplementary material D presents the
procedure used to compute the true confidence interval. In brief, it
was based on the knowledge of transition probabilities, which are
not known for real data, and were chosen as Pyear1 = Pyear2 for the
simulation. Once we computed these two confidence intervals, we
computed their IoU (intersection over union) as a comparison metric.
IoU = 0 represented no intersection (our estimated confidence interval
is not accurate), and IoU = 1 represented a perfect alignment (our
estimated confidence interval is perfectly accurate).

Fig. 3 presents the outputs of this procedure based on vyear1
detected and

vyear2
detected for all possible combinations of numbers between 1 and 50. If

either number of detected entries vyear1
detected and vyear2

detected is small, then our
estimated and true confidence interval had small IoU, and the estimated
uncertainty is not trustworthy. However, this discrepancy is rectified
when the number of detected entries rises. Fig. 3 (right) quantifies
this and shows the minimum number of detected entries vyear1

detected and
vyear2

detected so that IoU reaches a certain threshold. For example, 5 entries
are sufficient to obtain an IoU of 75%, whereas 10 entries produce
an IoU of 86%. Thus, the results are trustworthy once the number
of entries for both are greater than or equal to 5. Of note, we also
performed simulations with Pyear1 ≠ Pyear2 with similar conclusions,
and for the sake of simplicity (the resulting graph is symmetric) we
presented here the case Pyear1 = Pyear2 .

2.6. Empirical application of the model

2.6.1. Study site
We tested the model by applying it to a site (Laganas Bay, Za-

kynthos Island, Greece) supporting large numbers of loggerhead sea
turtles (Caretta caretta) subject to intense ecotourism (Fig. 4). The site
supports around 300 breeding adult females seasonally (April–August)
5

(Margaritoulis, 2005; Margaritoulis et al., 2011; Schofield et al., 2017)
and around 40 year-round residents of mostly juveniles and adult
males (Schofield et al., 2020; Papafitsoros et al., 2021). The island
is a popular holiday destination in summer (May–October) with over
850,000 visitors (2018–2019 on average, Papafitsoros et al., 2021).
There is a well established wildlife-watching industry, where tourists
observe turtles on organised boat tours (Fig. 4). This industry is esti-
mated to service 180,000 tourists over 9000 trips per year, generating
an annual revenue of more than 2.7 million euros (Schofield et al.,
2015; Papafitsoros et al., 2021).

2.6.2. Collection of social media records
Social media records were collected for 2019, 2020 and 2021

following the methods described in Papafitsoros et al. (2021). The
first year represented a typical tourism year (2019) and the next two
years (2020 and 2021) were heavily and mildly impacted by COVID-
19, respectively, when tourism levels were limited by global travel
restrictions (Schofield et al., 2021). Instagram was selected over other
social media types because of its popularity and convenient search
framework via ‘‘hashtags’’ and ‘‘places’’. We searched for entries using
specific hashtags and places related to the study site and species.
The list of hashtags used is provided in the supplementary material
of Papafitsoros et al. (2021). For an entry to be detected, the user must
have a public profile on Instagram and the entry must be uploaded
using one of the specified hashtags. The search was performed on at
least once weekly from 1 May to 31 October each year, with regular
retrospective searches to minimise missed entries. We did not record
entries from previous seasons or those used as advertisements by tour
operators. ‘‘Throwback’’ posts and re-posts from a different account
(duplicate posts) were detected by inspecting the captions, and were
excluded from our dataset. For each entry we recorded the date that it
was uploaded. We previously showed that more than 80% of entries
are uploaded within 2 days of being captured (Papafitsoros et al.,
2021). This information was obtained because a proportion of Insta-
gram entries (74 and 97 entries in 2018 and 2019 respectively) showed
both the date they had been uploaded and the actual dates that they
had been recorded in the caption of the entry. Observation conditions
that could be detected from social media were considered, allowing the
uploaded entries to be distinguished based on them (i.e., underwater,
boat, type of device, location). Here, we only selected entries taken
from a boat, i.e. organised tours, and private hire boats, which defines
the ‘‘condition of the observation’’. Of note, at this site, tourists remain
on board boats during organised boat tours, and take photographs of
sea turtles when they surface to breathe, using standard commercial
digital cameras or mobile phones.
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Fig. 4. Left: Southern part of Zakynthos Island (Greece) showing Laganas Bay and the maritime zoning of the National Marine Park of Zakynthos (Zones A-B-C). Inset: arrow
indicates location of Zakynthos Island in Greece. Right: Wildlife watching vessels observing sea turtles. Photograph credits: Kostas Papafitsoros.
2.6.3. Number of instagram users and visitors to Zakynthos
The number of annual Instagram users was obtained from the

Statista website: https://www.statista.com/statistics/183585/instagra
m-number-of-global-users, (accessed on 14.01.2022), see also Supple-
mentary table 3.

The number of arrivals to Zakynthos airport were obtained for
each month (May–October 2019–2021) from the Hellenic Civil Aviation
Authority (CAA, http://www.ypa.gr). For 2019–2020, the number of
daily airport arrivals was also available. Because daily airport arrivals
in 2021 were not available, we employed a mass conserving inter-
polation approach to generate a series of simulated daily arrivals,
the sum of which (over all days) is the same with the original sum
(over months) (https://uk.mathworks.com/matlabcentral/fileexchange
/99404-conservative-regridding). This approach was validated using
2019 and 2020 airport arrivals for which the real number of daily
arrivals was available.

2.6.4. Comparing real viewing pressure ratios with baseline values
We investigated how our developed framework provided more reli-

able information on changes to viewing pressure from year1 to another
year, (i.e. year2). We compared the estimated ratio of Vreal with the
corresponding confidence intervals to two baseline values (constant
1 and ratio of visitor arrivals). Constant 1 represented equal viewing
pressure in year1 and year2. When the ratio of Vreal was above (below)
value 1, then viewing pressure increased (decreased) from year1 to
year2. The second baseline value was the ratio of visitor arrivals. We
considered the ratio of the airport arrivals to be representative of
the ratio of the total number of people present at this focal site and
observing sea turtles. The comparison of the Vreal ratio to arrivals tested
to what degree Vreal is directly proportional to the number of visitors.
When the ratio of Vreal was not equal to the arrival ratio, changes to
Vreal might have also been driven by additional factors, not just the
change in the number of tourist arrivals (e.g. more organised tours
operating between years). When the ratio of Vreal was above (resp.
below) the arrival ratio, this meant that changes to Vreal were higher
(resp. lower) than that predicted by changes to tourist numbers when
assuming a simple linear relationship between the number of visitors
and number of animal viewings. This could happen due to other factors
that affect real viewing pressure (apart from the number of visitors),
which differ in a non-predictable way from year1 to year2. For instance,
small fluctuations in ecotourism activity might arise due to sudden
severe weather events or disruptions in the normal functioning of social
media platforms.

3. Results

3.1. Overview of instagram records and tourist numbers

We recorded 2646 Instagram entries from boats for 2019, 2020
and 2021 (n = 1382, n = 387 and n = 877 respectively; Fig. 5;
6

Fig. 5. Number of recorded daily Instagram entries taken from boats for May–October
for 2019–2021 (moving mean of 7 days).

Supplementary table 1). The total number of visitors in 2019 was
1,288,651 (airport and port combined) versus 386,756 (70% lower)
in 2020, due to COVID-19 pandemic travel restrictions. In 2021, there
were 803,868 visitors (107.8% higher than 2020, but still 37.6% lower
than 2019; Supplementary table 2).

3.2. Model versus raw data

We investigated three quantities as estimates for the ratio of the
ratio Vyear2

real ∕Vyear1
real :

• raw data ratio vyear2
detected∕v

year1
detected;

• point estimate (5) ratio
vyear2

detected
vyear1

detected

Nyear2
insta

Nyear1
insta

;

• associated confidence interval (4).

The raw data ratio was a natural candidate for estimating the real
pressure ratio. However, unlike the other two estimates, changes to the
number of Instagram users and uncertainty of that estimate were not
considered. Therefore, confidence interval (4) might be more reliable
than the raw data ratio estimate.

For example, we compared boat viewing pressure before (2019) and
during the COVID-19 pandemic (2021) for these three quantities when
aggregating viewing images at 3 and 7 day intervals (Fig. 6). For the
3 day aggregation window, the raw data ratios v2021detected∕v

2019
detected were

primarily below 1, apart from three time windows (mid-May, late June,
mid-July; see three arrows in Fig. 6), suggesting that boat viewing
pressure rose from 2019 to 2021 for these specific 3-day windows.
However, when adjusting for changes in the number of Instagram
users, the corresponding point estimate value of these 3-day windows
decreased close to 1, with the confidence interval being above and
below 1. Thus, the number of data (detected entries) was insufficient
to make objective inferences for this narrow time interval. In contrast,
when aggregating viewing images to 7 day intervals, the confidence
intervals for June–September remained below 1, indicating that boat
pressure change could be inferred with high certainty, and that it was
lower in 2020 than 2019.
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Fig. 6. Confidence intervals (light blue) for 2021/2019 ratios of the real boat pressure V2021
real ∕V

2019
real for loggerhead turtles (aggregating viewings in 3 and 7-days intervals). Dark

blue line represents the best point estimate, v2021detected
v2019detected

N2021
insta

N2019
insta

; red line represents the simple ratio of detected entries v2021detected∕v
2019
detected i.e., not accounting for changes in the number of

nstagram users. Horizontal dashed line represents equal real viewing pressures for the two years (ratio equal to 1). The three arrows point at time windows where the unadjusted
atio was above one (with low confidence) and dropped below one (with high confidence) when adjusting for changes in the number of Instagram users and using a larger
ggregation window. See https://github.com/sadda/Turtles_Covid for interactive plot for all year ratios 2020/2019, 2021/2019, 2021/2020.
Fig. 7. Confidence intervals (light blue) for 2020/2019 (top) and 2021/2019 (bottom) ratios of real boat pressure on loggerhead turtles, V2020
real ∕V

2019
real , V2021

real ∕V
2019
real for a series of 1,

, 15 and 184-day aggregation windows (the latter refers to the full period of May–October considered separately for each year). Dark blue line represents the best point estimate.
reen line represents the corresponding ratio of visitor arrivals (moving mean of 7 days). Horizontal dashed line represents equal real viewing pressure for the two years (ratio
qual to 1). Arrows are referred to in the text. See https://github.com/sadda/Turtles_Covid for interactive plot of all year ratios 2020/2019, 2021/2019, 2021/2020.
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We note that for visualisation purposes we selected the 2020/2019
nd 2021/2019 ratios, i.e., keeping the year 2019 as the denominator,
nd we did not work with the inverse ratios, in order for the ratios to
ostly fall between zero and one.

.3. Effect of time aggregations on the uncertainty of real pressure ratio

To evaluate how aggregating image records in different time in-
ervals impacted uncertainty in the real pressure ratio, we evaluated
ifferent time windows (1, 7, 15, 184 days (entire season); Fig. 7)
or 2020/2019 and 2021/2019. Data based on daily records led to
xtremely high uncertainty for the estimated real pressure ratio (very
arge confidence intervals), and should not be used (Fig. 7). Certainty
ncreased as the data were aggregated into larger time intervals, with 7
nd 15-day intervals providing higher confidence for July–September,
s the corresponding detected entries were higher (Fig. 8). The real
7

ressure ratio during this period was below 1, with high certainty, as all
onfidence intervals were below this number. The arrival ratio closely
ollowed the real pressure ratio, indicating proportionality between real
oat pressure and the number of tourists frequenting the site. Based
n the entire season (184 days), compared to 2019, boat observation
ressure was 25% and 50% lower in 2020 and 2021, respectively, with
ery high certainty, due to the small confidence interval.

Fig. 9 provides a further visualisation on how the size of the
onfidence intervals varied with the aggregation window (number of
ays). We aggregated the days of each month based on this window. For
xample, for a 4-day aggregation window, a month with 30 days was
plit into 7 windows (excluding the last 2 days). Then, for each month
May–October), we computed the average size of the confidence inter-
al for each window, defined as the ratio upper over the lower bound of
he interval, with 1 corresponding to the smallest possible confidence
nterval (Supplementary material C). During July–September (and June
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Fig. 8. Scatter plots of the values for pairs of detected entries (v2019detected , v
2020
detected) and (v2019detected , v

2021
detected) when considering 1-, 7- and 15-day aggregation windows, corresponding to

the plots in Fig. 6. The quadrants are colour-coded based on the size of the confidence interval for the corresponding real viewing pressure ratios V2020
real ∕V

2019
real , V2021

real ∕V
2019
real , to show

the degree of uncertainty as a function of the magnitude of the values for the detected entries. Larger aggregation windows, lead to a larger number of detected entries and thus
smaller confidence intervals (higher certainty) for the real viewing pressure ratio.
Fig. 9. Average confidence interval size (defined as upper bound/lower bound ratio) for real boat pressure ratio in 2020/2019 and 2021/2019 versus different day aggregation
windows. Aggregation windows were plotted separately for each month (June–October). May was excluded due to insufficient data.
2021/2019), the confidence interval had a smaller average width than
October, due to the larger number of detected entries. In parallel, the
width decreased in all months as the aggregation window increased.
For July–September (high visitor season) of 2021/2019, a 7-day ag-
gregation window represents an optimal balance between achieving
high certainty (confidence interval size < 1.5) with sufficiently fine
time scale resolution, since aggregation windows of >7-days do not
cause the width of the confidence interval to significantly decrease
further. In contrast, a 15-day window was needed for July–September
for 2020/2019 ratio (and June 2021/2019), due to fewer entries. For
October 2020/2019 and 2021/2019, the same certainty was achieved
by setting an aggregation window of >30 days.

4. Discussion

A key issue of passive crowdsourcing/iEcology raw data and asso-
ciated analysis is determining uncertainty to improve objective inter-
pretation (Isaac et al., 2014; Jarić et al., 2020). As such, the present
study provided a rigorous framework for using social media imagery
with confidence to infer temporal changes (within and across years) in
wildlife watching pressure. We showed that confidence increased when
integrating multiple days. This framework modelled the flow of infor-
mation from a human–animal interaction event to that event appearing
in social media in a detectable way. This was achieved by introducing
the notions of real and detected viewing pressure, linking them via tran-
sition probabilities and showing how temporal changes in the former
can be estimated by temporal changes in the latter. Detected viewing
pressure was modelled as a random variable, allowing uncertainty in
real viewing pressure change to be quantified by rigorously deriving
confidence intervals. Through applying the model at a site supporting
8

large scale sea turtle ecotourism, we demonstrated its advantages over
simply using raw data (i.e., simple ratio of detected animal entries in
given time periods). Through increasing the reliability of using social
media-based methods to quantify wildlife tourism pressure, our model
facilitates the use of social media as a scientific tool providing evidence
based information on human pressure.

Our study delineated appropriate time-windows to analyse social
media data temporally, allowing robust comparison across years, de-
spite highly different visitor levels due to COVID-19. The optimal
aggregation window (balance of high confidence and high temporal
resolution) for images at our study site was 7 days during the peak pe-
riod, with more days being needed during the low periods, due to fewer
images. Our results supported those of Tenkanen et al. (2017), who
showed that social media captured temporal variation in national park
visitation rates at a monthly scale, but was challenging on a daily basis,
due to fewer social media records. Other studies arbitrarily grouped in-
formation into monthly periods. For instance, Molyneaux et al. (2021)
compared the monthly number of photographs posted on Instagram
before and after the onset of the COVID-19 pandemic to quantify
variation in interactions between tourists and orangutans. Barros et al.
(2019) observed that Flickr geotagged data have enough information
to capture daily, weekly and monthly distribution patterns of visitors
of Spanish national parks, but did not perform temporal comparisons
of visitor numbers across years. By implementing our approach, studies
could maximise social media data by selecting appropriate aggregation
windows of sufficient temporal granularity, guaranteeing certainty in
interpretations.

This modularity of our model allows more refined versions to be
developed as knowledge of its key constituents becomes available. For
instance, estimates of the ratio Pyear2∕Pyear1 could be improved by
2 2
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directly incorporating the number of users that belong to the main
demographic characteristics (nationality, age group, culture) of visitors
to a focal site (Väisänen et al., 2021) or if available, the total number of
social media posts made from that site. The time-independence assump-
tion of transition probability P1 could also be refined (i.e. availability
of photographic equipment across years) by incorporating informa-
tion on the yearly ratios of global (or more refined demographically)
sales of equipment (e.g. smartphones/underwater cameras associated
to marine wildlife viewing). Our model could easily incorporate such
refinements by adjusting the corresponding ratio formulas. Our model
also allowed temporal changes to viewing pressure of specific animal
individuals/groups to be focused on by combining social media images
with photo-identification records. Examples of this include analysis of
specific African wild dog dens (Cloutier et al., 2021), gorilla family
groups (Molyneaux et al., 2021), and resident foraging sea turtles
versus migratory turtles (Papafitsoros et al., 2021). This flexibility is
particularly important because wildlife viewing pressure is not equally
distributed across all animals present at a given site or time period.
Certain individuals are often subjected to disproportionally higher
viewing pressure, due to ecotourism activities incidentally or deliber-
ately targeting these groups, particularly resident animals (Semeniuk
et al., 2009; Christiansen and Lusseau, 2014; Schofield et al., 2015;
Papafitsoros et al., 2021). Thus, social media could be used to tease
out this information quantitatively, and to introduce more appropriate
watching practices and conservation measures.

The selected social media platform also influenced interpretation
(Ghermandi et al., 2020), particularly as the demographics of visitors
and social media use change over time. Ideally, social media data
should reflect actual human–animal interactions, while minimising
user-induced biases, in parallel to revealing temporal variability in
these interactions. For this reason, we used Instagram, because it
captures real life human activity effectively (Tenkanen et al., 2017;
Hausmann et al., 2018). This attribute allowed us to objectively identify
temporal variation in viewing pressure. Alternatively, Flickr has been
widely used to infer spatial information on national park visitations,
due to its easily accessible geotagged photographs (Wood et al., 2013;
Barros et al., 2019; Ghermandi et al., 2020; Edwards et al., 2021);
yet, its temporal correlation with ground-truthed data is lower than of
Instagram (Tenkanen et al., 2017). Other platforms could also be used
in our model, like YouTube (Otsuka and Yamakoshi, 2020; Taklis et al.,
2020); however, larger time aggregation windows might be required to
account for lower temporal correlation between the time of viewing and
time of video uploading. In contrast, the demographics of Instagram
users, as well as those of more recently popular platforms (e.g. TikTok),
are not always representative of visitors to a focal site. For instance,
generally younger people use other social media forms (Heikinheimo
et al., 2017; Hausmann et al., 2018). Furthermore, the country of
origin might also affect social media use (Ghermandi and Sinclair,
2019). Biases might also be self-diminishing, such as if, hypothetically,
smartphone availability increased across years whereas Instagram (or
any social media) use decreases. In this case, the net output of social
media content might remain constant, even though the processes that
govern information flow from the focal site to social media platforms
are time dependent.

As with other technologies involving the remote collection of data,
passive crowdsourcing/social media data should be validated (or
ground-truthed) using robust field data to guarantee conservation poli-
cies are informed appropriately (Jarić et al., 2020). Since information
flow from the human–animal encounter to it being detectable in social
media changes across sites, validation should be site-specific. The
current study was methods-based, and so ground truthing was not
the primary focus; however, our outputs closely aligned with previous
studies at our site (Schofield et al., 2015; Papafitsoros et al., 2021). The
ground-truthing of our model would involve estimating P, which would
allow Vreal to be directly estimated at a given time interval, rather
9

than only the ratio in two time periods. This approach could provide a
useful comparison of the ratio estimation we provide here; however,
determining P remains challenging. P could be estimated by using
questionnaires targeting visitors at focal sites, investigating whether
visitors observed wildlife and uploaded any images on social media, or
by quantifying actual viewing pressure using direct observations over
time. Regular repetition of such surveys is necessary to determine the
time dependence of P, particularly in the long term, i.e. across years.

Finally, for our model to be applied successfully, three minimal
parameters are required at a given site; high levels of interactions and
high levels of social media activity, timely social media activity, and
extra information to validate the model. First, the activity of humans
observing, interacting, and photographing wildlife must be accompa-
nied by substantial social media activity. This is required since as we
showed, high numbers of social media entries increase the confidence
we have on the estimated temporal change of the real viewing pressure.
Thus, while our framework is suitable at sites where large scale tourism
and large numbers of wildlife coexist (>20 individuals), it is unlikely to
be useful in areas low levels of where human–wildlife interactions are
low (e.g. scientific expeditions in remote areas). Second, social media
activity should be timely. Our model works best in areas where people
upload images of their encounters with animals within 1–2 days of
making observations. If this is not the case, a correction for time delay
should be incorporated in the model. This phenomenon depends on
the social media platform used and site characteristics (good available
internet connection). For instance, people on vacation are more likely
to share personal moments almost immediately (Bayer et al., 2016).
Thus, sites that support tourist activities are more likely to be suitable
for our framework. Thirdly, the site should allow for some validation
of the model in any of the ways described in the previous paragraph.
Sites where numbers of visitors are recorded, either via park visitation
ticketing schemes or simply by recording the number of arrivals in main
entrance points (as it was the case for the site we considered here), are
more suitable than sites where there is no information on visitation
numbers is available whatsoever.

5. Conclusion

Most protected areas globally receive visitors that produce social
media content related to them (Tenkanen et al., 2017), leading to the
emergence of conservation culturomics/iEcology/passive crowdsourc-
ing. These records are typically used to study spatiotemporal visitation
patterns and interaction of humans with the natural environment, and
identify potential threats to wildlife (Sullivan et al., 2019; Jarić et al.,
2020; Edwards et al., 2021; Papafitsoros et al., 2021; Molyneaux et al.,
2021; Van Hamme et al., 2021; Cloutier et al., 2021). However, to
accomplish this, social media-related biases and uncertainties must
be overcome, with the current study making an important step to-
wards this. We modelled the flow of information from human–animal
encounter to its appearance in social media, and inferred temporal
changes in the number of encounters from temporal changes to corre-
sponding social media imagery. We focused on quantifying uncertainty
underlying such inferences, and identifying aggregation windows that
combined increased temporal granularity to reduce uncertainty. We
expect that continued advances in automating the mining of social
data, and machine learning, will facilitate the creation of well-curated
and meaningful datasets (Väisänen et al., 2021; Tuia et al., 2022).
Combined with our framework, such advances would increase the
number of studies using social media data to infer human impacts on
wildlife in different situations.
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