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ARTICLE INFO ABSTRACT

Keywords: Accurately monitoring sea turtle populations is crucial for informing effective conservation strategies; however,
Sea turtle monitoring traditional methods for assessing spatial distribution and abundance are time-consuming, labour-intensive,
UAV imagery

and prone to observer bias. Unoccupied Aerial Vehicles (UAVs) have become valuable tools for collecting
high-resolution imagery with minimal disturbance to marine fauna. However, the lack of standardized and
user-friendly platforms for processing UAV data limits their broader application. In this paper, we present a
lightweight browser-based web application designed to streamline the analysis of video collected by UAVs
to monitor sea turtles. The application requires no additional software installations beyond a modern web
browser and operates entirely on the client side, preserving data privacy. It supports the integration and
execution of artificial intelligence models locally, facilitating the automated detection and classification of
turtles in video footage. This tool, freely available, bridges the gap between UAV data collection and effective
conservation-oriented decision-making by enabling rapid, standardized, and scalable analysis. Our approach
promotes community-driven development and the reuse of AI models, making environmental monitoring
practices more accessible and collaborative.

Artificial intelligence
Environmental software
Browser-based applications
Wildlife detection
Client-side processing

1. Introduction data with less disturbance to animals (Pedrazzi et al., 2025; Duporge
et al., 2021; Bevan et al., 2018; Papazekou et al., 2024). These aerial
surveys using drones can acquire large amounts of imagery and video,

which can then be analysed to identify, count, and monitor sea turtles.

Generating data on the spatial distribution and population trends
of marine species, such as sea turtles, is challenging, yet necessary
to understand habitat use and inform conservation efforts. Indeed,
estimates of sea turtle abundances and trends are key parameters
for the assessment of their conservation status, yet obtaining these
estimates in marine foraging areas is extremely challenging because
of the elusive nature of sea turtles and the limited accessibility of
these areas (Rees et al.,, 2016). In this context, unoccupied aerial

Typically, the analysis of these video recordings involves the review of
multiple independent observers to minimize biases such as perception
errors (false negatives) and misidentification (false positives) (Agabiti
et al., 2024). For example, studies often employ two or three reviewers
who independently watch the footage and mark turtle sightings, with

vehicles (UAVs) have become increasingly valuable tools to assess the
distribution and abundance of sea turtles in various environments,
including nesting and foraging areas (Sykora-Bodie et al., 2017; Rees
et al., 2018; Robinson et al., 2020; Dickson et al., 2022). In contrast
to traditional methods, UAVs offer advantages such as reduced time to
accurately identify turtles compared to survey on boats (Yaney-Keller
et al., 2021). Compared to aircraft surveys, UAVs offer finer spatial and
temporal resolution, potentially lower costs and the ability to collect

discrepancies resolved by a third reviewer or through a consensus
process. This manual review process, while crucial for accuracy, can
be time-consuming.

However, the integration of neural networks and artificial intelli-
gence algorithms is enhancing the automated detection and classifica-
tion of turtles in UAV imagery, allowing for more rapid and efficient
analysis of large datasets. Convolutional neural networks (CNN), fed
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with overlapping tiles from captured images, have shown promis-
ing results by detecting more sea turtles compared to manual ef-
forts (Gray et al., 2019). Further explorations tested their ability to dis-
tinguish different marine species by analysing salient image parts (Du-
jon et al., 2021). Recent research, with the advent of You Only Look
Once (YOLO) (Redmon et al.,, 2016) object detection real-time ar-
chitectures, has focused on the automatic counting of green turtles
using YOLOv7 (Wang et al., 2023) coupled with BoT-SORT tracking,
achieving low false-positive rates in complex coastal areas (Noguchi
et al., 2025).

Studies have shown (Axford et al., 2024) that Al-powered systems
can significantly reduce the labour required for video analysis, addi-
tionally highlighting that open collaboration could foster significant
progress in the field. While challenges such as correcting for availability
bias (the underestimation that occurs when turtles are present but not
visible for detection) remain important considerations, UAVs coupled
with automated video analysis represent a significant advancement
in our ability to understand sea turtle ecology and support effective
conservation strategies (Gonzalez Nunez et al., 2024). The development
of open-access training datasets for AI models could further accelerate
the creation and improvement of these automated systems for global
sea turtle monitoring. Despite these advances, many of the workflows
developed to date still require the local installation of specialized
software, often relying on outdated libraries or dependencies, and
involve manual preprocessing of the input videos before analysis can
begin. Such technical barriers can hinder the adoption of these tools
by conservation practitioners who may lack advanced computational
expertise, thereby limiting their practical impact and wider dissem-
ination. Recent efforts to reduce manual intervention through fully
automated workflows (Dimauro et al., 2022) have improved acces-
sibility and usability for conservation practice, though a degree of
manual processing is often still required. Front-end deep learning web
applications (Goh et al., 2023), which deploy models directly on the
client without specialized inference back-ends, promise to alleviate
some of these technical barriers, albeit at the cost of a more com-
putationally constrained environment. Nevertheless, their potential in
an ecological context remains largely untapped. Recent research has
focused on using the web to access back-end processing power (Subeesh
et al., 2024; Zhou et al., 2025; Berger-Wolf et al., 2017) or to visualize
pre-computed data (Martinez-Movilla et al., 2024).

Building on this, our paper introduces a novel web application
designed to streamline the analysis of data collected by UAVs for the
monitoring of sea turtles. In its primary operating mode, no third-
party software is required beyond a modern web browser, making it
accessible to a broad range of users. Furthermore, the web application
does not interact with any back-end services besides the one used to
serve the web page. Such a tool is needed to bridge the gap between
the increasing availability of UAV technologies and the lack of stan-
dardized, user-friendly platforms for processing population trend data
collected by UAVs. Additionally, we present two original sea turtle
detection datasets that the research community can use and share for
research purposes. These datasets are still being populated with newly
acquired videos, as UAV harvesting campaigns are time-consuming and
resource-intensive.

We hope that our work will provide a foundation and a common
framework that sea turtle researchers can use to share their AI mod-
els with the wider community. The web-application is available for
experimentation at https://www.a2p.it/seaturtles. Its source code is
hosted on GitHub at https://github.com/neptun-ia-lab/turtle-det-web,
where any researcher can contribute their own datasets, case studies
and models. From the web-application, models can be executed locally
by opening recorded footage on local machines without uploading
it to third-party services. This provides researchers with immediate
insights into sea turtle populations and behaviours, enabling them to
develop more effective conservation strategies by quickly evaluating
the distribution and abundance of sea turtles. Our goal is to improve
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the efficiency of sea turtle monitoring, reduce the need for manual data
analysis, and minimize disturbance to the animals. This will support
better informed decision-making and improved conservation policies.
In this era of technology-enabled conservation, continued innovation
and collaboration are crucial to ensuring the long-term survival of
vital marine species, in line with the Sustainable Development Goal
(SDG) 14 (Life Below Water)' of the United Nations SDGs 2030 Agenda,
which aims to conserve and use the oceans, seas, and marine resources
sustainably.

2. Architecture overview of the web application

Inspired by the principles of local-first software (Kleppmann et al.,
2019), we designed a web application that allows researchers of the
marine ecosystem to investigate sea turtles within a local session on
a web browser page, as depicted in Fig. 1. This is achieved by down-
loading computer vision models and executing them in any sufficiently
modern web browser with WebGPU support using Web Platform APIs,
on a machine with adequate hardware. By doing this, researchers can
utilize their local resources without resorting to a cloud environment or
uploading their recorded UAV footage to third-party servers. Further-
more, in its self-contained in-browser version, the application does not
require the installation of any third-party software or dependencies, as
it is exclusively developed using the capabilities of the Web Platform.

The web application is based on the Full Stack FastAPI Tem-
plate (Ramirez, 2025) and is composed of two main parts, a back-end
and a front-end. The back-end is written in Python and provides core
functionalities for user-management and storage. Though included in
the used template, these capabilities are not used in the present version.
For this reason, the rest of this section will focus exclusively on the
front-end part, leaving back-end improvements for future work [6].
The front-end part, what the user directly sees and interacts with in
the web browser, is written in TypeScript to increase its robustness
and reduce potential bugs, primarily due to the type checks enabled by
using this language (Gao et al., 2017). The User Interface is developed
using ReactJS and Chakra UI libraries.

A Processor is the fundamental building block of the developed
application. It is fed with raw image data (for example, RGB frames
of the video being played) and returns the results of the processing,
in the form of detected object labels, the detection confidence scores,
and their location within the raw image as axis-aligned bounding-box
coordinates.

Versioning follows the GitHub commit history, where the latest
commit’s revision hash identifies the release. In the current software
version (d46ac7e), the web application ships with two types of pro-
cessors:

+ in-browser processors; in this processor type, video frames are
processed using the onnxruntime-web (ONNX Runtime develop-
ers, 2018) library. No additional software installation is required,
as the processor works exclusively with standard features of the
web platform. When the processor is initialized, it downloads any
resource it needs to run locally within the browser session, then it
warms up by executing a few inference calls with random inputs.
Some models might be limited or unsupported, depending on
the chosen execution provider? and the maturity of the browser
support;

1 https://www.globalgoals.org/goals/14-life-below-water/.

2 Execution providers allow executing ONNX graphs using specific hard-
ware or software capabilities, e.g., WebGPU, Wasm. While Wasm inference is
universally supported across all modern browsers, its performance are not as
good as WebGPU, though the support for the latter is still not mature.
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Fig. 1. A high-level overview of the analysis workflow.

» streamed processors; in this processor type, enabled in the
web-application by selecting the “HTTP Streaming” model type,
the video frames are streamed to a back-end service written in
Python, which executes a pipeline equivalent to the one imple-
mented via onnxruntime-web, but directly using the local hard-
ware resources via the chosen processing libraries (e.g., CUDA).
Processors of this type are meant to overcome the limitations
that might arise with in-browser processors, for example, memory
restrictions or unimplemented ONNX operators. The back-end
service can run on any reachable network machine, including
localhost. Due to resources considerations, our platform does not
currently provide publicly available hosted back-ends. However
users can create and host them based on the templates available
on our GitHub repository.

As new state-of-the-art architectures become available, supporting
them in the web application requires implementing a new processor.
The next section will focus on the typical inference workflow that is
common to both processor types.

2.1. The inference workflow

The platform currently supports two operating modes, which cor-
respond to different UI views: immediate (Section 2.2) and batched
(Section 2.3). For this overview, the difference between the two modes
is negligible, as the only difference is in the pace at which they can
process the incoming data and in the way the results are presented.

The workflow starts with the platform user opening a video file
in MP4 format (Lim and Singer, 2006), containing the footage to
be analysed. If the footage is recorded using a UAV and its flight
telemetry is available, it can be found within the video file’s subtitle
track or as a separate subtitle file. Due to the limitations of the browser
environment and the libraries we use, the telemetry embedded in the
video file cannot be used directly; it must be loaded as a separate
SRT file. Making the flight telemetry available enables the application
to associate latitude and longitude coordinates with the detections,
allowing it to estimate the size of the detected bounding box.

Given the detected bounding box B, its width B,, and height B,
are estimated by the model in pixel units in the image space. These
dimensions can be estimated in metres using the ground sampling
distance (GSD). The GSD,, for the width can be calculated as
)

gsd, = ——

Sy

~| =

where h is the altitude of the UAV, taken from flight telemetry at the
time the frame was recorded. f is the actual focal length of the camera,
s, is the width of the camera sensor, and i,, is the width of the frame.
All of these values are specified in the application settings. The GSD,,
for the height can be computed similarly by replacing the sensor width
and frame width with the respective heights. The dimensions of the

detection bounding box can be expressed in metres as (B, - GSD;, B,, -
G SThe.platform initializes the active processor, selected by the user in
the settings panel, by fetching any required resources and performing
a warm-up using random data. Once the processor is ready, the video
frames begin to be processed. To reduce the time taken to run inference
on a full video, frame-skipping settings are used to determine whether
the current frame needs to be skipped or can proceed to the next stage
of the pipeline.? From this point onward, the frames are processed as
individual raw images.

The pre-processing, inference, and post-processing stages are ap-
plied to each frame. The pre-processing stage prepares the raw images
to fit the expectations of the inference model. For example, if the model
requires the images to be a certain size, they are resized. The pre-
processed frame is then handled by the processor in the inference stage,
which sends the data to the wrapped model and returns the results
when they are available. Finally, the post-processing stage interprets
the model output, providing consistent data in the form of confidence
scores, bounding boxes scaled to the original image size, and labels.
These results are then combined with those from previously processed
frames and presented on the screen.

2.1.1. Pre-processing as part of the model

In a typical pipeline, pre-processing operations such as image resiz-
ing are performed before the data is fed to the model. In the context
of web applications, these operations are usually carried out using
JavaScript/TypeScript and the Web Platform Canvas APIL For example,
resizing an image requires an OffscreenCanvas to be created, the image
content to be copied to it at the new size, and then the raw image data
to be retrieved and fed to the model. In order to reduce inference time
and make the pre-processing phase more efficient, these operations can
be expressed as a model. Our pipeline for doing so looks as follows:

» We redefine any pre-processing operation using the torch library
in Python (see algorithm 1).

The implemented pre-processing model is then exported to an
ONNX file using the torch APIs.

The generated model can be either fused with the main inference
model or kept separate. With the former, the input is fed to a
single fused model that provides the caller with the inference
results. With the latter, the pre-processing model must be queried,
and its output used as input for the inference model, which is then
fed to the post-processing model. The implemented processors use
fused pre-processing mode.

3 E.g., if frame-skip is set to 3, a frame every 3 is processed, saving
computational resources.
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This enables the preprocessing, inference, and post-processing models
to be pipelined within ONNX, thereby reducing the number of copies
between the GPU and CPU (and vice versa) and improving the overall
inference performance. It also enables a higher inference rate to be
achieved in both the immediate and batched views. Additionally, the
same preprocessing pipeline is used for both streamed and in-browser
processors, ensuring consistent behaviour across processing modes.

Algorithm 1: SAHI preprocessing

Input: Image I, slice size s,, X s;,, overlap ratio r
Output: Set of sliced image patches S
Initialize S « #;
Obtain image width W and height H;
for x < 0 to W step s, - (1 —r) do
for y — 0 to H step s;, - (1 —r) do
Crop patch P « I[x : x+s,, y:y+s,l;
Store patch coordinates (x, y) with P;
Append (P, (x,y)) to S;
end
end
return S

2.1.2. Detecting sea turtles from high-resolution videos

Computer vision pre-trained models available to the research com-
munity are generally trained on image inputs of a fixed size (e.g., 640 X
480) and are then fine-tuned using images of the same size to achieve
the optimal performance for the required task. Thanks to transfer
learning, a pre-trained foundational model can be applied to a variety
of tasks using a smaller dataset than would be required for training
from scratch. Furthermore, even if the availability of a high-resolution
dataset is not a concern, increasing the resolution of the images in-
creases the model’s training requirements in terms of memory and
energy consumption. These constraints present challenges for detecting
small objects in high-resolution images, particularly in the context of
sea turtle detection. For example, cameras capture videos at a reso-
lution of 3840 x 2160 pixels (4K UHD), whereas sea turtles, when
recorded at an altitude of 30 m, have an average size of less than
100 x 100 pixels. Consequently, resizing the video frame to a resolution
that is acceptable for a pre-trained model would make detecting sea
turtles extremely challenging.

To overcome this challenge, our platform uses Slicing Aided Hyper
Inference (SAHI) (Akyon et al., 2022), a framework that improves the
detection of small objects in high-resolution images. SAHI can operate
at two different stages: during model fine-tuning and at inference time.
To support improved fine-tuning, a new dataset can be generated by
creating overlapping slices from the high-resolution images, which are
then used alongside the original images during training. At inference
time, SAHI first downscales the high-resolution frame (e.g., from 4K)
to the model’s fixed input size (e.g., 640 x 480) and performs an initial
detection pass. The original high-resolution frame is additionally split
into overlapping slices, each resized to the model input dimensions,
and inference is performed on each slice. Non-maximum suppression
(NMS) (Neubeck and Van Gool, 2006), a technique that eliminates
redundant overlapping detections by keeping only the most confident
prediction for each turtle, is then applied to merge detections across
slices.

While it is possible to train a model to perform inference directly
on higher-resolution images for better performance in small object
detection (as is the case with high-altitude sea turtle detection), this ap-
proach incurs a higher cost in terms of training resources, such as GPU
memory and power. Additionally, the higher input resolution would
translate to higher GPU requirements at inference time. Conversely,
using SAHI reduces training requirements and enables models trained
using lower resolution images to be reused.
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2.2. Immediate view

Fig. 2 illustrates the Immediate View operating mode with a video
file loaded and playing. When using this view, researchers can load
a video file and observe the progress of the inference models as the
video plays, with the results overlaid on the video canvas. However,
the speed at which the user can run inference on the video is limited
by its frame rate, making this mode less suitable for long videos. This
view comprises four sections:

The toolbar at the top, which grants user access to the session
options and enables video and telemetry loading.

The video canvas component, which is responsible for visualizing
the loaded video and for drawing detected targets in sync with it.
This component is further discussed in Section 2.2.1.

The progress bar component, which is technically part of the video
canvas, indicates the playing time of the video.

The detections timeline component: Whenever a target is detected,
a marker is placed on the timeline at the corresponding time.
While the target remains on screen, the marker grows to indicate
how long it was visible for. The marker also allows users to jump
to the detection by double-clicking on it, in addition to acting as
a visual cue.

If a target species is detected, an entry is added to a detection buffer
to collate detection events. If two events for the same detected object
occur within one second, they are merged as a single detection event.
These collated events are displayed on the timeline component and
can be exported at any time to Comma Separated Value (CSV) format,
together with additional relevant metadata such as the object’s location
and size. This allows researchers to analyse the output further using
third-party software.

2.2.1. The video canvas component

The video canvas is a custom ReactJS component that enables over-
laying detection information such as bounding boxes on video frames.
It incorporates a hidden web <video> element and a <canvas> at
its core. The former is used to load and decode the input video, and
the latter provides a drawable surface of the same size as the video.
Once a video is loaded and the user hits the play button, a request is
made to the <video> element to provide the image data for the frame
at the current execution time. The frame is then processed and the
results are composed on the <canvas> alongside the original frame
data. Although the <video> element can display video frames, it is
not possible to draw directly on it, so a <canvas> is required. Due to
processing latency, by the time inference output (bounding boxes and
confidence scores) is rendered on the canvas, a new frame may have
been displayed in the <video> element, potentially resulting in out-
of-sync results. Therefore, we decided to hide the <video> element
and use solely the <canvas> to present back to the user.

The video canvas component provides external hooks that allow
the application to plug in custom frame processing logic. However, it
retains control over the rendering aspects. As the video progresses, the
following pipeline is executed for each frame:

1. after a frame becomes ready, it is copied to an 0ffscreen-
Canvas.

2. raw RGB data is extracted from OffscreenCanvas as an
ImageData object.

3. the ImageData is fed to a frame processing callback function.
This function calls the active processor, which takes care of
performing all the needed transformations to fulfil its job and
eventually returns the results of the inference.

4. the raw RGB data is rendered over a temporary <canvas>
object.
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Fig. 2. The immediate view, showing a detection sea turtle being detected in a played video, along with its overlaid bounding box.

5. the mentioned <canvas> and the temporary <canvas> are
delivered to a frame compositing callback function, along with
the results from the inference on the analysed frame. Any detec-
tion is visually flagged to the user at this step by drawing on the
temporary <canvas>.

6. the next frame is requested using the requestVideoFrame-
Callback Web API, and the pipeline is executed again.

2.3. Batched view

The batched view (see Fig. 3) enables users to process videos poten-
tially faster than their playing frame-rate, meaning that the detection
process is bound to the available hardware resources and model archi-
tecture rather than the frame rate of the video. This view provides the
same capabilities and features as the Immediate view described earlier.
However, it does not offer a real-time preview of the detected objects,
and it uses fundamentally different technology to power the underlying
inference pipeline.

The view is based on the Web Codecs API (MDN, 2024), which is
offered on the Web Platform, and is available in the latest browsers.
Once a user has selected a video, along with an optional flight telemetry
file, the selected files are passed to a Web Worker (MDN, 2025b),
which runs further processing outside of the main thread. This prevents
the user interface from freezing and degrading the user experience.
A processing pipeline is defined and instantiated within the Worker
using a transform stream (MDN, 2025a), with each block in the pipeline

streaming its output to the next element in the processing chain. The
first step in this pipeline reads the raw video file from disk and feeds
file chunks to an MP4 demuxer.* As we do not want processing to be
bound to the playing frame rate, it is not possible to use the video
element, which performs demuxing automatically. This means we have
to take care of these implementation details manually. As demuxed
samples become available, they are processed by the next step in the
pipeline, a Video Decoder. Eventually, the decoded frames reach their
final destination, which is a custom WriteableStream that calls the
active processor to run inference on the video frames.

3. Datasets

Data were collected in situ using different UAVs in a variety of
light conditions, at different times of day, and in different locations, to
record sightings of target marine species, such as sea turtles. The data
includes significant variance in sea conditions, hue, sunlight, weather
conditions, and seabed complexity (Fig. 4).

The raw videos can be grouped into two categories, based on the
altitude of the drone at the time of the recording.

4 An MP4 demuxer identifies the streams (e.g., video, audio, ...) in the raw
stream and makes them available for further processing as individual streams.
Our web application uses MP4Box.js (gpac, 2025).
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Video File

Name: DJI_0017-converted.mp4
Duration: 0:02:17

Resolution: 3840x2160

File size: 902.16 MB » Type: video/mp4
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Fig. 3. The batched view with a running inference session.

(a) Sun reflection (glint) (b) Rocks on the seabed and sun reflec-
on waves tion

(c) Foam and waves from high altitude (d) Rocks on the seabed from low alti-
(dark blue hue) tude

(e) Complex seabed from
high altitude

(f) Seabed with rocks and clear sand
from high altitude on a moving sea

Fig. 4. Representative sample crops of the raw high-resolution images in-
cluded in the datasets to showcase different challenges to detection in a marine
environment.

The first category includes recordings from exploratory UAV flights
at mixed altitudes. These videos were recorded using a “DJI Phantom
4 Pro V2” UAV with a camera featuring an aperture range of F2.8 to
F11 and a 24 mm equivalent focal length. Because of the variation in
the altitude, the size in pixels of the target species in pixels ranges from
tens of pixels at high altitude to hundreds of pixels at low altitude.
The distance from the coast also varies, further increasing the detection
challenges commonly found in marine environments by introducing
complex, non-uniform coastal backgrounds (e.g., partially submerged
rocks).

The second category includes videos recorded with a “DJI Phantom
4 Pro” UAV, featuring a camera with an aperture range of F2.8 to F11.
Four videos were recorded in the Amvrakikos Gulf (N 39° 0/ E 21° 0'),
Greece, which is a sea turtle foraging site (Rees et al., 2013). Thirty
more videos were recorded in Kyparissia Bay (N 37° 21.0' E 21° 41.5'),
Greece, which is a sea turtle nesting area (Margaritoulis et al., 2025).
These were recorded at a constant altitude of 40 m and a flight speed
of 35 km/h (~9.7 m/s), with the camera at nadir, to survey three 2 km
parallel transects approximately 150 m, 300 m and 450 m from shore.
The UAV was able to cover each route using a single battery. Speed was
selected to give objects approximately 3 s in the visual field without
extending the flight time to require two batteries. Altitude was selected
to roughly generate a 50 m visual strip-width while maintaining turtles
as relatively large and discernible objects in the visual field. 4K video
resolution was selected as the maximum available on the drone, which
enabled observers to “zoom in” on objects within a frame to more
closely determine whether it is a turtle, or potentially to differentiate
between individual turtles. Routes were flown when the sea state was
between 0 and 2, with a nearly cloud-free sky and at times of day to
minimize sun glint.

In these flight conditions, the target species, such as sea turtles, fit
within an average bounding box of 70 x 70 pixels. The small size of the
detection target within the high-resolution image poses an additional
challenge for computer vision models, in addition to those commonly
encountered in marine environments (e.g., sun reflection and waves).
The raw material includes footage of complex seabeds without any
target species, which helps to improve model learning and inference
generalization. The raw video material was annotated using the open-
source, web-based Computer Vision Annotation Tool (CVAT) (CVAT.ai
Corporation, 2023). A sea turtle expert provided temporal and spatial
guidance indicating when and where turtles appeared in videos. Three
non-experts then generated frame-by-frame bounding box annotations
based on this guidance, which were subsequently validated by the
experts. Each non-expert annotator fully annotated an entire video. This
approach minimized expert time while ensuring annotation accuracy.

Two distinct object detection datasets were created from the two
categories mentioned earlier: Mixed Altitude and High Altitude. Rather
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(a) A mixed altitude dataset sample, with a sea turtle on the left on a clear seabed and a
mixture of rocks and sand on the right.

(b) A high altitude dataset sample, with a sea turtle just underneath the sea surface on the
right.

Fig. 5. Example images from the mixed altitude (top) and high altitude (bot-
tom).

than exporting individual frames from the videos and randomly as-
signing them to sub-datasets, the full videos were assigned to either
a training or a testing set to mitigate information leakage during
the training phase (Figueiredo and Mendes, 2024). The training set
accounted for 80% of the samples; the frames in the testing set were
further divided into a validation set (10%) and a test set (10%).

Finally, the annotations for each dataset were exported in the
COCO format (Lin et al., 2014) with frames saved as PNG images.
The Mixed Altitude dataset comprises 25442 images with a resolution
of 3840 x 2160 pixels. Each image takes up approximately 10 MB of
disk space, totalling 178 GB (see Fig. 5(a)). The High Altitude dataset
contains 6552 images with a resolution of 4096 x 2160, GSD,, = 1.46
and GSD,, = 1.68, with a total size of 39.1 GB (see Fig. 5(b)).

4. Deep learning models

While building the web-based platform, a variety of different model
architectures were tested, with a focus on the most recent and promis-
ing real-time object detection model architectures that could provide
a sustainable user experience within the constrained browser environ-
ment. The training pipelines were prototyped in Python (version 3.11)
using the PyTorch (version 2.5.1) machine learning framework with
CUDA support, enabling quick experimentation with state-of-the-art
techniques.

In order to identify the most effective architectures, we evaluated
them based on the following metrics:

» Mean Average Precision (mAP): measures detection accuracy
by evaluating how well the model correctly identifies objects and
localizes their positions. It is the average of the Average Precision
(AP) scores across all classes and Intersection over Union (IoU)
thresholds.

Ecological Informatics 93 (2026) 103569

Videos collected !

: l
‘ Data Collection ’ ] via UAVs :
T T T AOAT e i T T T
|
‘ Annotation ’ | CVAT for. video ‘
Lo _°f EEES !
I - - T -T-TT-T—-T-T T T - T T~ " |
Preprocessin 1 Random crop to 640x640
p g " Horizontal flip (p=0.5) |
- - - - T--T--T-T-T-~—-=-== |
‘ . . ’ | Train on augmented |
Training | |
i crops 1
mmmmmmmmmm—m ey
- |
‘ Evaluation ’ , Inference on SAHI gener: ‘

ated slices from the test set |

|
Lo o o o o

Fig. 6. Training pipeline overview. Input videos are collected via UAVs,
annotated using CVAT then preprocessed before being used for training. The
evaluation happens on a dedicated test set.

+ Inference time: the time it takes to run inference on a single
frame, after pre-processing the input to match the model needs,
measured from within the selected processor. This is measured
using the ONNX version of the model, using the Python back-end
with the CUDA ONNX execution provider, on the local testing
machine specified in Section 5.1.

ONNX compatibility: different architectures can use different op-
erators with different maturity, depending on the ONNX provider
being used. For example, all operators might be implemented in
the WASM provider, but some of them might not be present or be
buggy in the newer WebGPU provider.

The development and dry-run of the training pipeline were per-
formed on the same machine used for inference and testing, with
the specifications listed in the next section. The final models were
produced using distributed training, for which CINECA granted access
to the Leonardo cluster (BOOSTER partition) (Turisini et al., 2023).
Two nodes, each driven by a single 32-core Intel Ice Lake CPU, were
used; each node had four NVidia A100 SXM6 64 GB GPUs.

Transfer learning was employed by fine-tuning the models for
120 epochs, with a learning rate of 10~* using the AdamW opti-
mizer (Loshchilov and Hutter, 2019), starting from publicly available
model checkpoints pre-trained on the Microsoft COCO dataset (Lin
et al., 2014). Light augmentation was applied to the training pipeline.
First, each 4K input image was randomly cropped to a 640 x 640
window, enabling the pipeline to see both crops with target classes
and background-only crops. Then, with a probability of 0.5, the crop
was horizontally flipped. The output of these transformations was then
fed to the rest of the training pipeline. The testing set was created by
slicing the frames into 640 x 640 crops, with an overlap of 20% across
the crops (see Fig. 6 for the full pipeline).

After training, the models are converted to ONNX format, en-
abling them to be loaded either within a browser-based processor
using onnxruntime-web or in a local back-end via onnxruntime-gpu. This
process ensures that the models’ inputs are dynamic and uses a target
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Table 1
Model performance after fine-tuning on the high altitude dataset. The inference
time is measured on a single input, without SAHI

Model mAP Inference Parameters (M)
time (ms)
DeformableDETR (Zhu et al., 0.47 50 40
2020)
RT-DETR (Zhao et al., 2024) 0.50 8 20
D-FINE (Peng et al., 2024) 0.46 7 19
Table 2

Hyperparameters and configuration settings for model training and
inference.

Parameter Value

Training epochs 120

Learning rate 1074

Optimizer AdamW

Training input size 640 x 640

Augmentation Random crop, horizontal flip (p = 0.5)

SAHI slice size 640 x 640 pixels
SAHI overlap ratio 20%

SAHI confidence threshold 0.8

SAHI NMS IoU threshold 0.8

ONNX opset of 16, as well as performing minor optimizations such as
constant folding.

The models that have been trained and tested, as reported in Table
1, were selected because they provide state-of-the-art accuracy while
keeping inference times and parameter counts low, a combination
particularly suitable for the browser computational constraints. The
choice was therefore driven by technical considerations rather than
ecological ones. DeformableDETR (Zhu et al., 2020) is an object detec-
tion architecture featuring multi-scale deformable attention modules,
an efficient attention mechanism for processing image feature maps.
RT-DETR (Zhao et al., 2024) improves upon DETR architectures by in-
corporating an efficient hybrid encoder to process multi-scale features,
and an uncertainty-minimal query selection to enhance the quality
of initial object queries, enabling real-time detections. D-FINE (Peng
et al.,, 2024) redefines the task of predicting target bounding boxes’
fixed coordinates as an iterative refinement of probability distributions,
significantly enhancing localization accuracy. Although the RT-DETR
model’s inference time is slightly longer, it has a higher mAP when
tested on the high-altitude dataset, making it more suitable for our
evaluation.

4.1. Using SAHI

As discussed in Section 2.1.2, to increase the model’s ability to de-
tect turtle sightings in high-altitude images, the high-resolution images
must be sliced and each slice fed to the model. The original SAHI
implementation is written in Python, but most of the pre-processing
and post-processing operations are performed using the numpy library.
While this is convenient and generally not a problem, these constraints
prevent potential optimizations as they require data to be moved
between the GPU and CPU and prevent pre-processing operations from
being converted to ONNX. Therefore, as part of this work, all the SAHI-
relevant operations were converted to torch to enable SAHI to be
used as a component of this application within the browser and via
the streamed inference approach.

Additionally, the SAHI slicing configuration was chosen through
preliminary tuning to match the characteristics of our dataset and
models: slices of 640 x 640 pixels with a 20% overlap and post-
processing thresholds of 0.8 for confidence and 0.8 for NMS IoU. All
hyperparameters and configuration settings are detailed in Table 2.
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(d) (e) ()

Fig. 7. Images 7(a), 7(b), 7(c) represent false positives due to different sea
conditions. 7(d), 7(e), 7(f) represent double counting of an individual turtle
attributed to SAHI edge cases.

4.2. Further optional filtering

In our object detection pipeline, which we applied to individual
video frames, we observed three main categories of problems (see Fig.
7). The first category comprises false positives caused by challenging
sea conditions, such as waves, which can resemble target objects and
only last for a few frames. Although improving the detection model
could potentially address this issue, we found that a simple temporal
filter that removes detections that do not persist for at least three
consecutive frames is equally effective. Therefore, we defer model im-
provements to future work. The second category includes false positives
caused by marine litter being misclassified as sea turtles. The third
category of problems arises from the use of SAHI (see Section 2.1.2),
particularly when detections occur at the edges of image slices and
generate overlapping bounding boxes that are not successfully merged
by non-maximum suppression. Addressing this issue will likely require
modifications to SAHI’s post-processing logic, which we also leave for
future investigation.

5. Evaluation of the proof of concept

We designed an experiment to evaluate the developed platform
(hereinafter referred as PoC). This involved identifying and marking the
time reference of each turtle sighting when scanning a series of evalua-
tion videos, i.e., the time a turtle first becomes visible in a video frame
and the time it leaves the frame. A panel of three sea turtle experts took
part in the experiment, each filling in their findings individually in a
spreadsheet designed for this purpose. In addition to noting the time
of each sighting, each participant was asked to classify each sighting
as either maybe turtle or turtle. The former captures uncertainty about
a specific sighting (e.g., mistaking a rock for a turtle at high altitude),
while the latter expresses high confidence. Each expert was also asked
to record how long it took them to review each file and perform their
analysis. It is important to note that sightings marked as maybe turtle
are treated as true sightings if at least two experts detected them.

The evaluation videos were also loaded into the Batched View
(Section 2.3) to produce machine-generated annotations, which were
then compared with the spreadsheets completed by the participants.
The videos were processed at their original resolution with different
frame-skip settings to evaluate the processing times (Table 3). The final
reported results were computed with an 8-frame skip, evaluating three
frames for each second of footage shot at 23.967 frames-per-second
(FPS).
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Table 3
The time it takes to process a 4K video with a duration of 5:28 min, depending
on the frame-skip settings.

Frame-skip Analysis time (mm:ss)
0 (all processed) 50:03

2 26:10

4 13:08

8 6:53

16 3:40

The session was further set to use a streamed processor with the best
model, which was trained using the high-altitude dataset (see Table 1)
and served from a local Python back-end. It is worth noting that the
model could not be used directly in the browser due to a bug (Lochner,
2025) in the onnxruntime-web library, which had not yet been fixed
at the time of writing. However, once resolved, it will be possible to
use the same model without the streamed back-end, directly within the
browser, without affecting the accuracy or inference time. Videos were
loaded one at a time into the web interface, with the next video only
loading after the results of the previous one had been exported to a CSV
file. The model was set to report detections with a confidence score
> 0.8.

The evaluation material consists of six MP4 videos (h264 compres-
sion), with a resolution of 4096 x 2160 pixels at 23.967 FPS, each
with a duration of 5 min and 28 s. These videos were recorded using a
“DJI Phantom 4 Pro” UAV flying off the Kyparissia Bay (N 37° 21.0' E
21° 41.5"), Greece. The videos used for this evaluation phase were not
included in any of the datasets used for model training or evaluation,
and had not been seen by the experts beforehand. These high-altitude
videos were selected for the final evaluation as they represent typical
operational scenarios for sea turtles monitoring and provide a stringent
test of the system’s detection capabilities under real-world conditions.
While the sample size is limited for a comprehensive ecological valida-
tion, it is appropriate to demonstrate the platform’s technical feasibility
and operational functionality under field conditions.

5.1. Machine specifications

The specifications of the machine used for evaluating the proof-of-
concept web application are as follows:

* Processor: AMD Ryzen 9 3950X

* Memory: 128 GB DDR4

+ Storage: 1 TB NVMe SSD

* Graphics: NVIDIA GeForce RTX 4090
» Operating System: Ubuntu 24.04

This is a high-performance build capable of handling inference on
4K video streams. Although the application was tested using the Firefox
browser (specifically Firefox Nightly 140.0al, build id 20250522213939),
it is designed to be fully compatible with any modern web browser. It
can operate seamlessly across different operating systems, except when
using a streamed processor. In that case, the host operating system re-
quires a working Python 3.11 environment with onnxruntime-gpu
support to run the local back-end service.

5.2. Results

The results produced by the participants in the experiments, includ-
ing the web application, were evaluated using the following approach.
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5.2.1. Matching criteria

Let A be the time of first sighting of a turtle and B the time of the
last visible position of the turtle in a video: together, they identify the
detected sighting window [A, B]. Let G, and G be the points in time
identifying the ground truth time window for a sighting [G 4, G]. We
define two matching criteria:

+ Strict matching. A detected sighting [A, B] matches a ground
truth sighting [G4,Gpl if A > G, and B < Gp, meaning that
the detected window is fully contained within the ground truth
window.

Relaxed matching. A detected sighting [A, B] matches a ground
truth sighting [G,,Gzl if A > G4, — At and B < Gp + At
This criterion accounts for minor temporal imprecision in the
detected time windows by extending the ground truth window
by 4t on both sides. We set At = 3 s as this represents the
typical temporal error observed in expert annotations, where most
experts correctly identified sighting windows but were off by at
most 3 s on each end.

Each detected sighting is matched to the closest ground truth sight-
ing (if any) that satisfies the chosen criterion.

5.2.2. Evaluation metrics
Using the matching criteria defined above, we compute the follow-
ing metrics:

+ Precision. The percentage of detected sightings that match a
ground truth sighting. This measures the proportion of detections
that are correct.

+ Recall. The percentage of ground truth sightings that are matched
by at least one detected sighting. This measures the proportion of
actual turtle sightings that were successfully detected.

+ Analysis time. The time that a participant used to analyse a given
video and annotate the sightings, including the time taken to
consult with other experts, if needed.

Both precision and recall are computed using strict and relaxed
matching criteria, yielding four detection quality metrics in total.

The results of the evaluation are sketched in Table 4. In videos
DJI_0001, DJI_0002, and DJI_0003, the precision and recall of
the PoC are comparable to those of the domain experts. For these
videos, the analysis time of the system is similar to that taken by
the other participants. The initial videos are simpler, featuring good
sea conditions and easily identifiable turtles. The last three videos
(DJI_0004, DJI_0028, DJI_0029) present increased complexity,
which is reflected in the domain experts’ longer analysis time, while the
PoC analysis time remains constant. This increased complexity makes
it moderately more challenging for human experts to achieve perfect
precision and recall. This results in misaligned detection windows and
occasional identification errors, as highlighted by the fact that relaxed
precision and recall are consistently higher than their strict counter-
parts for several experts. This is to be expected, given that domain
experts have to manually pause the video and record the time. The last
two videos are significantly more complex, featuring multiple turtles
per frame and more challenging sea conditions. In these cases, the PoC
exhibits substantially lower precision (0.33-0.44) than domain experts,
due to a high false positive rate, though it maintains perfect recall
(1.00) in DJI_0029 and reasonable recall (0.67) in DJI_0028. When
naive filtering is applied, as discussed in Section 4.2, the filtered PoC’s
precision improves dramatically to 0.82-0.92, becoming comparable to
or exceeding that of the domain experts, while maintaining or even
improving recall (0.93-1.00).

Although the potential for improvement may seem limited, the main
benefit is that it reduces the need for domain experts to be present
throughout the video processing stage. Their expertise can instead be
focused on reviewing and validating the results afterwards. In this
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Table 4
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Proof of concept validation results: how the model and experts perform in terms of the accuracy and analysis time of sightings. The Turtle Count column refers

to the number of turtles identified by the participant, including false positives.

Video Participant Precision Recall Relaxed precision Relaxed recall Turtle count Ground truth Analysis time (s)
Expert 1 1.00 1.00 1.00 1.00 2 2 420
Expert 2 1.00 1.00 1.00 1.00 2 2 600
DJ1.0001 Expert 3 1.00 1.00 1.00 1.00 2 2 523
PoC 1.00 1.00 1.00 1.00 2 2 413
Expert 1 0.67 0.67 1.00 1.00 3 3 660
Expert 2 1.00 1.00 1.00 1.00 3 3 600
DJ1.0002 Expert 3 1.00 1.00 1.00 1.00 3 3 609
PoC 0.67 0.67 1.00 1.00 3 3 413
Expert 1 1.00 1.00 1.00 1.00 0 0 360
Expert 2 1.00 1.00 1.00 1.00 0 0 300
DJL.0003 Expert 3 1.00 1.00 1.00 1.00 0 0 331
PoC 1.00 1.00 1.00 1.00 0 0 413
Expert 1 1.00 1.00 1.00 1.00 5 5 660
Expert 2 0.33 0.40 0.83 1.00 6 5 900
DJ1.0004 Expert 3 1.00 1.00 1.00 1.00 5 5 718
PoC 0.80 0.80 0.80 0.80 4 5 413
Expert 1 1.00 0.67 1.00 0.80 12 15 720
Expert 2 0.94 0.67 0.94 0.87 15 15 1080
DJI_0028 Expert 3 1.00 1.00 1.00 1.00 15 15 948
PoC 0.33 0.67 0.39 0.56 20 15 413
PoC filtered® 0.827 0.937 0.82° 0.937 18° 15 413
Expert 1 1.00 1.00 1.00 1.00 44 44 1200
Expert 2 1.00 0.73 1.00 0.89 39 44 1500
DJI_0029 Expert 3 1.00 0.84 1.00 0.98 43 44 943
PoC 0.44 1.00 0.56 1.00 78 44 413
PoC filtered® 0.92¢ 1.00¢ 0.92% 1.00° 48 44 413

2 PoC results obtained via the naive filter described in Section 4.2.

context, the domain experts emphasized that it is better to have a
higher number of false positives than to miss actual turtle detections,
since the former can be dismissed quickly, whereas the latter represents
a missed conservation opportunity.

5.3. Limitations of the proposed approach
The use of the PoC revealed some potential limitations, which will

be addressed as the technology matures and as part of future work for
the platform:

WebGPU browser maturity. Different web browsers have differ-
ent maturity levels of their WebGPU implementation and, due
to this, the quality of the experience may vary across browser
vendors and versions. The WebGPU implementation status across
browsers is documented by the GPU for the web community
group (W3C GPU for the Web Community Group, 2025). The PoC
was tested with Firefox Nightly 140.0al (build ID 202505222
13939) and requires a dedicated GPU for in-browser inference.
Inconsistent performance. When using in-browser processing,
inference time heavily depends on the specifications of the ma-
chine being used and might differ from the results outlined in the
previous sections. In contrast, cloud-based processing provides
more consistent performance.

High false-positives rate in complex videos. The output of the
detection model is currently filtered by the simple mechanism
described in Section 4.2. We believe that using object tracking
algorithms will address this limitation.

Video file size limitations. The maximum file size of a video file
that can be processed by the web application is limited by the
amount of RAM on the user machine and any browser-dependent
restrictions. The video files used for our evaluation ranged from
1.2 GB to 4.1 GB. We empirically found an optimal video file size
to be around 2 GB.

SRT flight telemetry limitations. While easier to access and
process, the DJI SRT-based flight telemetry is recorded at 1 Hz,
affecting synchronization accuracy, and lacks some of the data
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points available in the more comprehensive DAT/TXT flight logs
(e.g. orientation).

- Limited ecological generalizability. The models trained for our
study are based on a limited dataset. Broader ecological validation
of these models requires larger and more diverse training datasets.

6. Conclusions and future work

This paper details the development of a local-first web application
designed to automatically assess sea turtle distribution and speed up
the disambiguation process during manual reviews. We successfully
collected, annotated, and reviewed extensive footage to create two dis-
tinct prototype datasets: one comprising frames from mixed altitudes,
and one comprising frames taken at a standard height. State-of-the-
art models were then trained on these datasets. The best-performing
models were exported to ONNX and seamlessly integrated into the
web application. This enables researchers to process footage locally,
leveraging their computational resources and eliminating the need
for third-party cloud services. This work lays a solid foundation for
future enhancements, including local model loading, post-processing
refinement, replaying detection files over videos, generating statistical
summaries, deployment on a public website.

Building on this foundational platform, we plan to conduct exten-
sive ecological validation in our upcoming data collection campaigns.
This will include rigorous quantitative assessments demonstrating how
the tool improves population estimates, habitat use analysis and be-
havioural interpretation. Such comprehensive validation will leverage
the platform’s standardized approach to establish robust ecological
benchmarks.

Furthermore, we intend to make additional pre-trained models
available in the web application and provide users with guidance on
which model to use, depending on their task. An intriguing aspect we
plan to explore is enabling users to fine-tune models on their own
datasets, an untapped possibility enabled by the latest technologies.
Empowering experts to perform annotations within the browser and
use their local hardware to fine-tune existing models would signifi-
cantly enhance the platform’s flexibility and adaptability to diverse
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research contexts. As we continue to collect videos through ad hoc
UAV campaigns, we will perform a more rigorous comparison of model
architectures. These next steps will further enhance the application’s
usability and impact in the field of sea turtle monitoring and con-
servation. In addition to our ongoing commitment to maintenance,
we hope that opening the platform’s source code and granting a very
permissive license (MIT) will seed a community that will contribute
updates and new features. The open nature of the platform means that
its use is not limited to sea turtle identification, but through scientists
uploading their own models it can be used for research on other marine
megafauna, such as cetaceans, and even other ecological contexts such
as terrestrial ecological surveying.
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