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 A B S T R A C T

Accurately monitoring sea turtle populations is crucial for informing effective conservation strategies; however, 
traditional methods for assessing spatial distribution and abundance are time-consuming, labour-intensive, 
and prone to observer bias. Unoccupied Aerial Vehicles (UAVs) have become valuable tools for collecting 
high-resolution imagery with minimal disturbance to marine fauna. However, the lack of standardized and 
user-friendly platforms for processing UAV data limits their broader application. In this paper, we present a 
lightweight browser-based web application designed to streamline the analysis of video collected by UAVs 
to monitor sea turtles. The application requires no additional software installations beyond a modern web 
browser and operates entirely on the client side, preserving data privacy. It supports the integration and 
execution of artificial intelligence models locally, facilitating the automated detection and classification of 
turtles in video footage. This tool, freely available, bridges the gap between UAV data collection and effective 
conservation-oriented decision-making by enabling rapid, standardized, and scalable analysis. Our approach 
promotes community-driven development and the reuse of AI models, making environmental monitoring 
practices more accessible and collaborative.
1. Introduction

Generating data on the spatial distribution and population trends 
of marine species, such as sea turtles, is challenging, yet necessary 
to understand habitat use and inform conservation efforts. Indeed, 
estimates of sea turtle abundances and trends are key parameters 
for the assessment of their conservation status, yet obtaining these 
estimates in marine foraging areas is extremely challenging because 
of the elusive nature of sea turtles and the limited accessibility of 
these areas (Rees et al., 2016). In this context, unoccupied aerial 
vehicles (UAVs) have become increasingly valuable tools to assess the 
distribution and abundance of sea turtles in various environments, 
including nesting and foraging areas (Sykora-Bodie et al., 2017; Rees 
et al., 2018; Robinson et al., 2020; Dickson et al., 2022). In contrast 
to traditional methods, UAVs offer advantages such as reduced time to 
accurately identify turtles compared to survey on boats (Yaney-Keller 
et al., 2021). Compared to aircraft surveys, UAVs offer finer spatial and 
temporal resolution, potentially lower costs and the ability to collect 
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data with less disturbance to animals (Pedrazzi et al., 2025; Duporge 
et al., 2021; Bevan et al., 2018; Papazekou et al., 2024). These aerial 
surveys using drones can acquire large amounts of imagery and video, 
which can then be analysed to identify, count, and monitor sea turtles. 
Typically, the analysis of these video recordings involves the review of 
multiple independent observers to minimize biases such as perception 
errors (false negatives) and misidentification (false positives) (Agabiti 
et al., 2024). For example, studies often employ two or three reviewers 
who independently watch the footage and mark turtle sightings, with 
discrepancies resolved by a third reviewer or through a consensus 
process. This manual review process, while crucial for accuracy, can 
be time-consuming.

However, the integration of neural networks and artificial intelli-
gence algorithms is enhancing the automated detection and classifica-
tion of turtles in UAV imagery, allowing for more rapid and efficient 
analysis of large datasets. Convolutional neural networks (CNN), fed 
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with overlapping tiles from captured images, have shown promis-
ing results by detecting more sea turtles compared to manual ef-
forts (Gray et al., 2019). Further explorations tested their ability to dis-
tinguish different marine species by analysing salient image parts (Du-
jon et al., 2021). Recent research, with the advent of You Only Look 
Once (YOLO) (Redmon et al., 2016) object detection real-time ar-
chitectures, has focused on the automatic counting of green turtles 
using YOLOv7 (Wang et al., 2023) coupled with BoT-SORT tracking, 
achieving low false-positive rates in complex coastal areas (Noguchi 
et al., 2025).

Studies have shown (Axford et al., 2024) that AI-powered systems 
can significantly reduce the labour required for video analysis, addi-
tionally highlighting that open collaboration could foster significant 
progress in the field. While challenges such as correcting for availability 
bias (the underestimation that occurs when turtles are present but not 
visible for detection) remain important considerations, UAVs coupled 
with automated video analysis represent a significant advancement 
in our ability to understand sea turtle ecology and support effective 
conservation strategies (Gonzalez Nunez et al., 2024). The development 
of open-access training datasets for AI models could further accelerate 
the creation and improvement of these automated systems for global 
sea turtle monitoring. Despite these advances, many of the workflows 
developed to date still require the local installation of specialized 
software, often relying on outdated libraries or dependencies, and 
involve manual preprocessing of the input videos before analysis can 
begin. Such technical barriers can hinder the adoption of these tools 
by conservation practitioners who may lack advanced computational 
expertise, thereby limiting their practical impact and wider dissem-
ination. Recent efforts to reduce manual intervention through fully 
automated workflows (Dimauro et al., 2022) have improved acces-
sibility and usability for conservation practice, though a degree of 
manual processing is often still required. Front-end deep learning web 
applications (Goh et al., 2023), which deploy models directly on the 
client without specialized inference back-ends, promise to alleviate 
some of these technical barriers, albeit at the cost of a more com-
putationally constrained environment. Nevertheless, their potential in 
an ecological context remains largely untapped. Recent research has 
focused on using the web to access back-end processing power (Subeesh 
et al., 2024; Zhou et al., 2025; Berger-Wolf et al., 2017) or to visualize 
pre-computed data (Martínez-Movilla et al., 2024).

Building on this, our paper introduces a novel web application 
designed to streamline the analysis of data collected by UAVs for the 
monitoring of sea turtles. In its primary operating mode, no third-
party software is required beyond a modern web browser, making it 
accessible to a broad range of users. Furthermore, the web application 
does not interact with any back-end services besides the one used to 
serve the web page. Such a tool is needed to bridge the gap between 
the increasing availability of UAV technologies and the lack of stan-
dardized, user-friendly platforms for processing population trend data 
collected by UAVs. Additionally, we present two original sea turtle 
detection datasets that the research community can use and share for 
research purposes. These datasets are still being populated with newly 
acquired videos, as UAV harvesting campaigns are time-consuming and 
resource-intensive.

We hope that our work will provide a foundation and a common 
framework that sea turtle researchers can use to share their AI mod-
els with the wider community. The web-application is available for 
experimentation at https://www.a2p.it/seaturtles. Its source code is 
hosted on GitHub at https://github.com/neptun-ia-lab/turtle-det-web, 
where any researcher can contribute their own datasets, case studies 
and models. From the web-application, models can be executed locally 
by opening recorded footage on local machines without uploading 
it to third-party services. This provides researchers with immediate 
insights into sea turtle populations and behaviours, enabling them to 
develop more effective conservation strategies by quickly evaluating 
the distribution and abundance of sea turtles. Our goal is to improve 
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the efficiency of sea turtle monitoring, reduce the need for manual data 
analysis, and minimize disturbance to the animals. This will support 
better informed decision-making and improved conservation policies. 
In this era of technology-enabled conservation, continued innovation 
and collaboration are crucial to ensuring the long-term survival of 
vital marine species, in line with the Sustainable Development Goal 
(SDG) 14 (Life Below Water)1 of the United Nations SDGs 2030 Agenda, 
which aims to conserve and use the oceans, seas, and marine resources 
sustainably.

2. Architecture overview of the web application

Inspired by the principles of local-first software (Kleppmann et al., 
2019), we designed a web application that allows researchers of the 
marine ecosystem to investigate sea turtles within a local session on 
a web browser page, as depicted in Fig.  1. This is achieved by down-
loading computer vision models and executing them in any sufficiently 
modern web browser with WebGPU support using Web Platform APIs, 
on a machine with adequate hardware. By doing this, researchers can 
utilize their local resources without resorting to a cloud environment or 
uploading their recorded UAV footage to third-party servers. Further-
more, in its self-contained in-browser version, the application does not 
require the installation of any third-party software or dependencies, as 
it is exclusively developed using the capabilities of the Web Platform.

The web application is based on the Full Stack FastAPI Tem-
plate (Ramírez, 2025) and is composed of two main parts, a back-end 
and a front-end. The back-end is written in Python and provides core 
functionalities for user-management and storage. Though included in 
the used template, these capabilities are not used in the present version. 
For this reason, the rest of this section will focus exclusively on the 
front-end part, leaving back-end improvements for future work [6]. 
The front-end part, what the user directly sees and interacts with in 
the web browser, is written in TypeScript to increase its robustness 
and reduce potential bugs, primarily due to the type checks enabled by 
using this language (Gao et al., 2017). The User Interface is developed 
using ReactJS and Chakra UI libraries.

A Processor is the fundamental building block of the developed 
application. It is fed with raw image data (for example, RGB frames 
of the video being played) and returns the results of the processing, 
in the form of detected object labels, the detection confidence scores, 
and their location within the raw image as axis-aligned bounding-box 
coordinates.

Versioning follows the GitHub commit history, where the latest 
commit’s revision hash identifies the release. In the current software 
version (d46ac7e), the web application ships with two types of pro-
cessors:

• in-browser processors; in this processor type, video frames are 
processed using the onnxruntime-web (ONNX Runtime develop-
ers, 2018) library. No additional software installation is required, 
as the processor works exclusively with standard features of the 
web platform. When the processor is initialized, it downloads any 
resource it needs to run locally within the browser session, then it 
warms up by executing a few inference calls with random inputs. 
Some models might be limited or unsupported, depending on 
the chosen execution provider2 and the maturity of the browser 
support;

1 https://www.globalgoals.org/goals/14-life-below-water/.
2 Execution providers allow executing ONNX graphs using specific hard-

ware or software capabilities, e.g., WebGPU, Wasm. While Wasm inference is 
universally supported across all modern browsers, its performance are not as 
good as WebGPU, though the support for the latter is still not mature.

https://www.a2p.it/seaturtles
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Fig. 1. A high-level overview of the analysis workflow.
• streamed processors; in this processor type, enabled in the 
web-application by selecting the ‘‘HTTP Streaming’’ model type, 
the video frames are streamed to a back-end service written in 
Python, which executes a pipeline equivalent to the one imple-
mented via onnxruntime-web, but directly using the local hard-
ware resources via the chosen processing libraries (e.g., CUDA). 
Processors of this type are meant to overcome the limitations 
that might arise with in-browser processors, for example, memory 
restrictions or unimplemented ONNX operators. The back-end 
service can run on any reachable network machine, including 
localhost. Due to resources considerations, our platform does not 
currently provide publicly available hosted back-ends. However 
users can create and host them based on the templates available 
on our GitHub repository.

As new state-of-the-art architectures become available, supporting 
them in the web application requires implementing a new processor. 
The next section will focus on the typical inference workflow that is 
common to both processor types.

2.1. The inference workflow

The platform currently supports two operating modes, which cor-
respond to different UI views: immediate (Section 2.2) and batched 
(Section 2.3). For this overview, the difference between the two modes 
is negligible, as the only difference is in the pace at which they can 
process the incoming data and in the way the results are presented.

The workflow starts with the platform user opening a video file 
in MP4 format (Lim and Singer, 2006), containing the footage to 
be analysed. If the footage is recorded using a UAV and its flight 
telemetry is available, it can be found within the video file’s subtitle 
track or as a separate subtitle file. Due to the limitations of the browser 
environment and the libraries we use, the telemetry embedded in the 
video file cannot be used directly; it must be loaded as a separate 
SRT file. Making the flight telemetry available enables the application 
to associate latitude and longitude coordinates with the detections, 
allowing it to estimate the size of the detected bounding box.

Given the detected bounding box 𝐵, its width 𝐵𝑤 and height 𝐵ℎ
are estimated by the model in pixel units in the image space. These 
dimensions can be estimated in metres using the ground sampling 
distance (GSD). The GSD𝑤 for the width can be calculated as

𝑔𝑠𝑑𝑤 =
ℎ ⋅ 𝑠𝑤
𝑓 ⋅ 𝑖𝑤

where ℎ is the altitude of the UAV, taken from flight telemetry at the 
time the frame was recorded. 𝑓 is the actual focal length of the camera, 
𝑠𝑤 is the width of the camera sensor, and 𝑖𝑤 is the width of the frame. 
All of these values are specified in the application settings. The GSDℎ
for the height can be computed similarly by replacing the sensor width 
and frame width with the respective heights. The dimensions of the 
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detection bounding box can be expressed in metres as (𝐵ℎ ⋅𝐺𝑆𝐷ℎ, 𝐵𝑤 ⋅
𝐺𝑆𝐷𝑤). The platform initializes the active processor, selected by the user in 
the settings panel, by fetching any required resources and performing 
a warm-up using random data. Once the processor is ready, the video 
frames begin to be processed. To reduce the time taken to run inference 
on a full video, frame-skipping settings are used to determine whether 
the current frame needs to be skipped or can proceed to the next stage 
of the pipeline.3 From this point onward, the frames are processed as 
individual raw images.

The pre-processing, inference, and post-processing stages are ap-
plied to each frame. The pre-processing stage prepares the raw images 
to fit the expectations of the inference model. For example, if the model 
requires the images to be a certain size, they are resized. The pre-
processed frame is then handled by the processor in the inference stage, 
which sends the data to the wrapped model and returns the results 
when they are available. Finally, the post-processing stage interprets 
the model output, providing consistent data in the form of confidence 
scores, bounding boxes scaled to the original image size, and labels. 
These results are then combined with those from previously processed 
frames and presented on the screen.

2.1.1. Pre-processing as part of the model
In a typical pipeline, pre-processing operations such as image resiz-

ing are performed before the data is fed to the model. In the context 
of web applications, these operations are usually carried out using
JavaScript/TypeScript and the Web Platform Canvas API. For example, 
resizing an image requires an OffscreenCanvas to be created, the image 
content to be copied to it at the new size, and then the raw image data 
to be retrieved and fed to the model. In order to reduce inference time 
and make the pre-processing phase more efficient, these operations can 
be expressed as a model. Our pipeline for doing so looks as follows:

• We redefine any pre-processing operation using the torch library 
in Python (see algorithm 1).

• The implemented pre-processing model is then exported to an 
ONNX file using the torch APIs.

• The generated model can be either fused with the main inference 
model or kept separate. With the former, the input is fed to a 
single fused model that provides the caller with the inference 
results. With the latter, the pre-processing model must be queried, 
and its output used as input for the inference model, which is then 
fed to the post-processing model. The implemented processors use 
fused pre-processing mode.

3 E.g., if frame-skip is set to 3, a frame every 3 is processed, saving 
computational resources.
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This enables the preprocessing, inference, and post-processing models 
to be pipelined within ONNX, thereby reducing the number of copies 
between the GPU and CPU (and vice versa) and improving the overall 
inference performance. It also enables a higher inference rate to be 
achieved in both the immediate and batched views. Additionally, the 
same preprocessing pipeline is used for both streamed and in-browser 
processors, ensuring consistent behaviour across processing modes.

Algorithm 1: SAHI preprocessing
Input: Image 𝐼 , slice size 𝑠𝑤 × 𝑠ℎ, overlap ratio 𝑟
Output: Set of sliced image patches 𝑆
Initialize 𝑆 ← ∅;
Obtain image width 𝑊  and height 𝐻 ;
for 𝑥 ← 0 to 𝑊  step 𝑠𝑤 ⋅ (1 − 𝑟) do

for 𝑦 ← 0 to 𝐻 step 𝑠ℎ ⋅ (1 − 𝑟) do
Crop patch 𝑃 ← 𝐼[𝑥 ∶ 𝑥 + 𝑠𝑤, 𝑦 ∶ 𝑦 + 𝑠ℎ];
Store patch coordinates (𝑥, 𝑦) with 𝑃 ;
Append (𝑃 , (𝑥, 𝑦)) to 𝑆;

end 
end 
return 𝑆

2.1.2. Detecting sea turtles from high-resolution videos
Computer vision pre-trained models available to the research com-

munity are generally trained on image inputs of a fixed size (e.g., 640 ×
480) and are then fine-tuned using images of the same size to achieve 
the optimal performance for the required task. Thanks to transfer 
learning, a pre-trained foundational model can be applied to a variety 
of tasks using a smaller dataset than would be required for training 
from scratch. Furthermore, even if the availability of a high-resolution 
dataset is not a concern, increasing the resolution of the images in-
creases the model’s training requirements in terms of memory and 
energy consumption. These constraints present challenges for detecting 
small objects in high-resolution images, particularly in the context of 
sea turtle detection. For example, cameras capture videos at a reso-
lution of 3840 × 2160 pixels (4K UHD), whereas sea turtles, when 
recorded at an altitude of 30 m, have an average size of less than 
100 × 100 pixels. Consequently, resizing the video frame to a resolution 
that is acceptable for a pre-trained model would make detecting sea 
turtles extremely challenging.

To overcome this challenge, our platform uses Slicing Aided Hyper 
Inference (SAHI) (Akyon et al., 2022), a framework that improves the 
detection of small objects in high-resolution images. SAHI can operate 
at two different stages: during model fine-tuning and at inference time. 
To support improved fine-tuning, a new dataset can be generated by 
creating overlapping slices from the high-resolution images, which are 
then used alongside the original images during training. At inference 
time, SAHI first downscales the high-resolution frame (e.g., from 4K) 
to the model’s fixed input size (e.g., 640 × 480) and performs an initial 
detection pass. The original high-resolution frame is additionally split 
into overlapping slices, each resized to the model input dimensions, 
and inference is performed on each slice. Non-maximum suppression 
(NMS) (Neubeck and Van Gool, 2006), a technique that eliminates 
redundant overlapping detections by keeping only the most confident 
prediction for each turtle, is then applied to merge detections across 
slices.

While it is possible to train a model to perform inference directly 
on higher-resolution images for better performance in small object 
detection (as is the case with high-altitude sea turtle detection), this ap-
proach incurs a higher cost in terms of training resources, such as GPU 
memory and power. Additionally, the higher input resolution would 
translate to higher GPU requirements at inference time. Conversely, 
using SAHI reduces training requirements and enables models trained 
using lower resolution images to be reused.
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2.2. Immediate view

Fig.  2 illustrates the Immediate View operating mode with a video 
file loaded and playing. When using this view, researchers can load 
a video file and observe the progress of the inference models as the 
video plays, with the results overlaid on the video canvas. However, 
the speed at which the user can run inference on the video is limited 
by its frame rate, making this mode less suitable for long videos. This 
view comprises four sections:

• The toolbar at the top, which grants user access to the session 
options and enables video and telemetry loading.

• The video canvas component, which is responsible for visualizing 
the loaded video and for drawing detected targets in sync with it. 
This component is further discussed in Section 2.2.1.

• The progress bar component, which is technically part of the video 
canvas, indicates the playing time of the video.

• The detections timeline component: Whenever a target is detected, 
a marker is placed on the timeline at the corresponding time. 
While the target remains on screen, the marker grows to indicate 
how long it was visible for. The marker also allows users to jump 
to the detection by double-clicking on it, in addition to acting as 
a visual cue.

If a target species is detected, an entry is added to a detection buffer 
to collate detection events. If two events for the same detected object 
occur within one second, they are merged as a single detection event. 
These collated events are displayed on the timeline component and 
can be exported at any time to Comma Separated Value (CSV) format, 
together with additional relevant metadata such as the object’s location 
and size. This allows researchers to analyse the output further using 
third-party software.

2.2.1. The video canvas component
The video canvas is a custom ReactJS component that enables over-

laying detection information such as bounding boxes on video frames. 
It incorporates a hidden web <video> element and a <canvas> at 
its core. The former is used to load and decode the input video, and 
the latter provides a drawable surface of the same size as the video. 
Once a video is loaded and the user hits the play button, a request is 
made to the <video> element to provide the image data for the frame 
at the current execution time. The frame is then processed and the 
results are composed on the <canvas> alongside the original frame 
data. Although the <video> element can display video frames, it is 
not possible to draw directly on it, so a <canvas> is required. Due to 
processing latency, by the time inference output (bounding boxes and 
confidence scores) is rendered on the canvas, a new frame may have 
been displayed in the <video> element, potentially resulting in out-
of-sync results. Therefore, we decided to hide the <video> element 
and use solely the <canvas> to present back to the user.

The video canvas component provides external hooks that allow 
the application to plug in custom frame processing logic. However, it 
retains control over the rendering aspects. As the video progresses, the 
following pipeline is executed for each frame:

1. after a frame becomes ready, it is copied to an Offscreen-
Canvas.

2. raw RGB data is extracted from OffscreenCanvas as an
ImageData object.

3. the ImageData is fed to a frame processing callback function. 
This function calls the active processor, which takes care of 
performing all the needed transformations to fulfil its job and 
eventually returns the results of the inference.

4. the raw RGB data is rendered over a temporary <canvas>
object.
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Fig. 2. The immediate view, showing a detection sea turtle being detected in a played video, along with its overlaid bounding box.
5. the mentioned <canvas> and the temporary <canvas> are 
delivered to a frame compositing callback function, along with 
the results from the inference on the analysed frame. Any detec-
tion is visually flagged to the user at this step by drawing on the 
temporary <canvas>.

6. the next frame is requested using the requestVideoFrame-
Callback Web API, and the pipeline is executed again.

2.3. Batched view

The batched view (see Fig.  3) enables users to process videos poten-
tially faster than their playing frame-rate, meaning that the detection 
process is bound to the available hardware resources and model archi-
tecture rather than the frame rate of the video. This view provides the 
same capabilities and features as the Immediate view described earlier. 
However, it does not offer a real-time preview of the detected objects, 
and it uses fundamentally different technology to power the underlying 
inference pipeline.

The view is based on the Web Codecs API (MDN, 2024), which is 
offered on the Web Platform, and is available in the latest browsers. 
Once a user has selected a video, along with an optional flight telemetry 
file, the selected files are passed to a Web Worker (MDN, 2025b), 
which runs further processing outside of the main thread. This prevents 
the user interface from freezing and degrading the user experience. 
A processing pipeline is defined and instantiated within the Worker 
using a transform stream (MDN, 2025a), with each block in the pipeline 
5 
streaming its output to the next element in the processing chain. The 
first step in this pipeline reads the raw video file from disk and feeds 
file chunks to an MP4 demuxer.4 As we do not want processing to be 
bound to the playing frame rate, it is not possible to use the video 
element, which performs demuxing automatically. This means we have 
to take care of these implementation details manually. As demuxed 
samples become available, they are processed by the next step in the 
pipeline, a Video Decoder. Eventually, the decoded frames reach their 
final destination, which is a custom WriteableStream that calls the 
active processor to run inference on the video frames.

3. Datasets

Data were collected in situ using different UAVs in a variety of 
light conditions, at different times of day, and in different locations, to 
record sightings of target marine species, such as sea turtles. The data 
includes significant variance in sea conditions, hue, sunlight, weather 
conditions, and seabed complexity (Fig.  4).

The raw videos can be grouped into two categories, based on the 
altitude of the drone at the time of the recording.

4 An MP4 demuxer identifies the streams (e.g., video, audio, . . . ) in the raw 
stream and makes them available for further processing as individual streams. 
Our web application uses MP4Box.js (gpac, 2025).
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Fig. 3. The batched view with a running inference session.
Fig. 4. Representative sample crops of the raw high-resolution images in-
cluded in the datasets to showcase different challenges to detection in a marine 
environment.
6 
The first category includes recordings from exploratory UAV flights 
at mixed altitudes. These videos were recorded using a ‘‘DJI Phantom 
4 Pro V2’’ UAV with a camera featuring an aperture range of 𝐹2.8 to 
𝐹11 and a 24 mm equivalent focal length. Because of the variation in 
the altitude, the size in pixels of the target species in pixels ranges from 
tens of pixels at high altitude to hundreds of pixels at low altitude. 
The distance from the coast also varies, further increasing the detection 
challenges commonly found in marine environments by introducing 
complex, non-uniform coastal backgrounds (e.g., partially submerged 
rocks).

The second category includes videos recorded with a ‘‘DJI Phantom 
4 Pro’’ UAV, featuring a camera with an aperture range of 𝐹2.8 to 𝐹11. 
Four videos were recorded in the Amvrakikos Gulf (N 39◦ 0′ E 21◦ 0′), 
Greece, which is a sea turtle foraging site (Rees et al., 2013). Thirty 
more videos were recorded in Kyparissia Bay (N 37◦ 21.0′ E 21◦ 41.5′), 
Greece, which is a sea turtle nesting area (Margaritoulis et al., 2025). 
These were recorded at a constant altitude of 40 m and a flight speed 
of 35 km∕h (∼9.7 m∕s), with the camera at nadir, to survey three 2 km 
parallel transects approximately 150 m, 300 m and 450 m from shore. 
The UAV was able to cover each route using a single battery. Speed was 
selected to give objects approximately 3 s in the visual field without 
extending the flight time to require two batteries. Altitude was selected 
to roughly generate a 50 m visual strip-width while maintaining turtles 
as relatively large and discernible objects in the visual field. 4K video 
resolution was selected as the maximum available on the drone, which 
enabled observers to ‘‘zoom in’’ on objects within a frame to more 
closely determine whether it is a turtle, or potentially to differentiate 
between individual turtles. Routes were flown when the sea state was 
between 0 and 2, with a nearly cloud-free sky and at times of day to 
minimize sun glint.

In these flight conditions, the target species, such as sea turtles, fit 
within an average bounding box of 70 × 70 pixels. The small size of the 
detection target within the high-resolution image poses an additional 
challenge for computer vision models, in addition to those commonly 
encountered in marine environments (e.g., sun reflection and waves). 
The raw material includes footage of complex seabeds without any 
target species, which helps to improve model learning and inference 
generalization. The raw video material was annotated using the open-
source, web-based Computer Vision Annotation Tool (CVAT) (CVAT.ai 
Corporation, 2023). A sea turtle expert provided temporal and spatial 
guidance indicating when and where turtles appeared in videos. Three 
non-experts then generated frame-by-frame bounding box annotations 
based on this guidance, which were subsequently validated by the 
experts. Each non-expert annotator fully annotated an entire video. This 
approach minimized expert time while ensuring annotation accuracy.

Two distinct object detection datasets were created from the two 
categories mentioned earlier: Mixed Altitude and High Altitude. Rather 
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Fig. 5. Example images from the mixed altitude (top) and high altitude (bot-
tom).

than exporting individual frames from the videos and randomly as-
signing them to sub-datasets, the full videos were assigned to either 
a training or a testing set to mitigate information leakage during 
the training phase (Figueiredo and Mendes, 2024). The training set 
accounted for 80% of the samples; the frames in the testing set were 
further divided into a validation set (10%) and a test set (10%).

Finally, the annotations for each dataset were exported in the 
COCO format (Lin et al., 2014) with frames saved as PNG images. 
The Mixed Altitude dataset comprises 25442 images with a resolution 
of 3840 × 2160 pixels. Each image takes up approximately 10 MB of 
disk space, totalling 178 GB (see Fig.  5(a)). The High Altitude dataset 
contains 6552 images with a resolution of 4096 × 2160, 𝐺𝑆𝐷𝑤 = 1.46
and 𝐺𝑆𝐷ℎ = 1.68, with a total size of 39.1 GB (see Fig.  5(b)).

4. Deep learning models

While building the web-based platform, a variety of different model 
architectures were tested, with a focus on the most recent and promis-
ing real-time object detection model architectures that could provide 
a sustainable user experience within the constrained browser environ-
ment. The training pipelines were prototyped in Python (version 3.11) 
using the PyTorch (version 2.5.1) machine learning framework with 
CUDA support, enabling quick experimentation with state-of-the-art 
techniques.

In order to identify the most effective architectures, we evaluated 
them based on the following metrics:

• Mean Average Precision (mAP): measures detection accuracy 
by evaluating how well the model correctly identifies objects and 
localizes their positions. It is the average of the Average Precision 
(AP) scores across all classes and Intersection over Union (IoU) 
thresholds.
7 
Fig. 6. Training pipeline overview. Input videos are collected via UAVs, 
annotated using CVAT then preprocessed before being used for training. The 
evaluation happens on a dedicated test set.

• Inference time: the time it takes to run inference on a single 
frame, after pre-processing the input to match the model needs, 
measured from within the selected processor. This is measured 
using the ONNX version of the model, using the Python back-end 
with the CUDA ONNX execution provider, on the local testing 
machine specified in Section 5.1.

• ONNX compatibility: different architectures can use different op-
erators with different maturity, depending on the ONNX provider 
being used. For example, all operators might be implemented in 
the WASM provider, but some of them might not be present or be 
buggy in the newer WebGPU provider.

The development and dry-run of the training pipeline were per-
formed on the same machine used for inference and testing, with 
the specifications listed in the next section. The final models were 
produced using distributed training, for which CINECA granted access 
to the Leonardo cluster (BOOSTER partition) (Turisini et al., 2023). 
Two nodes, each driven by a single 32-core Intel Ice Lake CPU, were 
used; each node had four NVidia A100 SXM6 64 GB GPUs.

Transfer learning was employed by fine-tuning the models for 
120 epochs, with a learning rate of 10−4 using the AdamW opti-
mizer (Loshchilov and Hutter, 2019), starting from publicly available 
model checkpoints pre-trained on the Microsoft COCO dataset (Lin 
et al., 2014). Light augmentation was applied to the training pipeline. 
First, each 4K input image was randomly cropped to a 640 × 640 
window, enabling the pipeline to see both crops with target classes 
and background-only crops. Then, with a probability of 0.5, the crop 
was horizontally flipped. The output of these transformations was then 
fed to the rest of the training pipeline. The testing set was created by 
slicing the frames into 640 × 640 crops, with an overlap of 20% across 
the crops (see Fig.  6 for the full pipeline).

After training, the models are converted to ONNX format, en-
abling them to be loaded either within a browser-based processor 
using onnxruntime-web or in a local back-end via onnxruntime-gpu. This 
process ensures that the models’ inputs are dynamic and uses a target 



A.P. Placitelli et al. Ecological Informatics 93 (2026) 103569 
Table 1
Model performance after fine-tuning on the high altitude dataset. The inference 
time is measured on a single input, without SAHI.
 Model mAP Inference 

time (ms)
Parameters (M) 

 DeformableDETR (Zhu et al., 
2020)

0.47 50 40  

 RT-DETR (Zhao et al., 2024) 0.50 8 20  
 D-FINE (Peng et al., 2024) 0.46 7 19  

Table 2
Hyperparameters and configuration settings for model training and
inference.
 Parameter Value  
 Training epochs 120  
 Learning rate 10−4  
 Optimizer AdamW  
 Training input size 640 × 640  
 Augmentation Random crop, horizontal flip (p = 0.5) 
 SAHI slice size 640 × 640 pixels  
 SAHI overlap ratio 20%  
 SAHI confidence threshold 0.8  
 SAHI NMS IoU threshold 0.8  

ONNX opset of 16, as well as performing minor optimizations such as 
constant folding.

The models that have been trained and tested, as reported in Table 
1, were selected because they provide state-of-the-art accuracy while 
keeping inference times and parameter counts low, a combination 
particularly suitable for the browser computational constraints. The 
choice was therefore driven by technical considerations rather than 
ecological ones. DeformableDETR (Zhu et al., 2020) is an object detec-
tion architecture featuring multi-scale deformable attention modules, 
an efficient attention mechanism for processing image feature maps. 
RT-DETR (Zhao et al., 2024) improves upon DETR architectures by in-
corporating an efficient hybrid encoder to process multi-scale features, 
and an uncertainty-minimal query selection to enhance the quality 
of initial object queries, enabling real-time detections. D-FINE (Peng 
et al., 2024) redefines the task of predicting target bounding boxes’ 
fixed coordinates as an iterative refinement of probability distributions, 
significantly enhancing localization accuracy. Although the RT-DETR 
model’s inference time is slightly longer, it has a higher mAP when 
tested on the high-altitude dataset, making it more suitable for our 
evaluation.

4.1. Using SAHI

As discussed in Section 2.1.2, to increase the model’s ability to de-
tect turtle sightings in high-altitude images, the high-resolution images 
must be sliced and each slice fed to the model. The original SAHI 
implementation is written in Python, but most of the pre-processing 
and post-processing operations are performed using the numpy library. 
While this is convenient and generally not a problem, these constraints 
prevent potential optimizations as they require data to be moved 
between the GPU and CPU and prevent pre-processing operations from 
being converted to ONNX. Therefore, as part of this work, all the SAHI-
relevant operations were converted to torch to enable SAHI to be 
used as a component of this application within the browser and via 
the streamed inference approach.

Additionally, the SAHI slicing configuration was chosen through 
preliminary tuning to match the characteristics of our dataset and 
models: slices of 640 × 640 pixels with a 20% overlap and post-
processing thresholds of 0.8 for confidence and 0.8 for NMS IoU. All 
hyperparameters and configuration settings are detailed in Table  2.
8 
Fig. 7. Images 7(a), 7(b), 7(c) represent false positives due to different sea 
conditions. 7(d), 7(e), 7(f) represent double counting of an individual turtle 
attributed to SAHI edge cases.

4.2. Further optional filtering

In our object detection pipeline, which we applied to individual 
video frames, we observed three main categories of problems (see Fig. 
7). The first category comprises false positives caused by challenging 
sea conditions, such as waves, which can resemble target objects and 
only last for a few frames. Although improving the detection model 
could potentially address this issue, we found that a simple temporal 
filter that removes detections that do not persist for at least three 
consecutive frames is equally effective. Therefore, we defer model im-
provements to future work. The second category includes false positives 
caused by marine litter being misclassified as sea turtles. The third 
category of problems arises from the use of SAHI (see Section 2.1.2), 
particularly when detections occur at the edges of image slices and 
generate overlapping bounding boxes that are not successfully merged 
by non-maximum suppression. Addressing this issue will likely require 
modifications to SAHI’s post-processing logic, which we also leave for 
future investigation.

5. Evaluation of the proof of concept

We designed an experiment to evaluate the developed platform 
(hereinafter referred as PoC). This involved identifying and marking the 
time reference of each turtle sighting when scanning a series of evalua-
tion videos, i.e., the time a turtle first becomes visible in a video frame 
and the time it leaves the frame. A panel of three sea turtle experts took 
part in the experiment, each filling in their findings individually in a 
spreadsheet designed for this purpose. In addition to noting the time 
of each sighting, each participant was asked to classify each sighting 
as either maybe turtle or turtle. The former captures uncertainty about 
a specific sighting (e.g., mistaking a rock for a turtle at high altitude), 
while the latter expresses high confidence. Each expert was also asked 
to record how long it took them to review each file and perform their 
analysis. It is important to note that sightings marked as maybe turtle
are treated as true sightings if at least two experts detected them.

The evaluation videos were also loaded into the Batched View 
(Section 2.3) to produce machine-generated annotations, which were 
then compared with the spreadsheets completed by the participants. 
The videos were processed at their original resolution with different 
frame-skip settings to evaluate the processing times (Table  3). The final 
reported results were computed with an 8-frame skip, evaluating three 
frames for each second of footage shot at 23.967 frames-per-second 
(FPS).
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Table 3
The time it takes to process a 4K video with a duration of 5:28 min, depending 
on the frame-skip settings.
 Frame-skip Analysis time (mm:ss) 
 0 (all processed) 50:03  
 2 26:10  
 4 13:08  
 8 6:53  
 16 3:40  

The session was further set to use a streamed processor with the best 
model, which was trained using the high-altitude dataset (see Table  1) 
and served from a local Python back-end. It is worth noting that the 
model could not be used directly in the browser due to a bug (Lochner, 
2025) in the onnxruntime-web library, which had not yet been fixed 
at the time of writing. However, once resolved, it will be possible to 
use the same model without the streamed back-end, directly within the 
browser, without affecting the accuracy or inference time. Videos were 
loaded one at a time into the web interface, with the next video only 
loading after the results of the previous one had been exported to a CSV 
file. The model was set to report detections with a confidence score 
> 0.8.

The evaluation material consists of six MP4 videos (h264 compres-
sion), with a resolution of 4096 × 2160 pixels at 23.967 FPS, each 
with a duration of 5 min and 28 s. These videos were recorded using a 
‘‘DJI Phantom 4 Pro’’ UAV flying off the Kyparissia Bay (N 37◦ 21.0′ E 
21◦ 41.5′), Greece. The videos used for this evaluation phase were not 
included in any of the datasets used for model training or evaluation, 
and had not been seen by the experts beforehand. These high-altitude 
videos were selected for the final evaluation as they represent typical 
operational scenarios for sea turtles monitoring and provide a stringent 
test of the system’s detection capabilities under real-world conditions. 
While the sample size is limited for a comprehensive ecological valida-
tion, it is appropriate to demonstrate the platform’s technical feasibility 
and operational functionality under field conditions.

5.1. Machine specifications

The specifications of the machine used for evaluating the proof-of-
concept web application are as follows:

• Processor: AMD Ryzen 9 3950X
• Memory: 128 GB DDR4
• Storage: 1 TB NVMe SSD
• Graphics: NVIDIA GeForce RTX 4090
• Operating System: Ubuntu 24.04

This is a high-performance build capable of handling inference on 
4K video streams. Although the application was tested using the Firefox 
browser (specifically Firefox Nightly 140.0a1, build id 20250522213939
it is designed to be fully compatible with any modern web browser. It 
can operate seamlessly across different operating systems, except when 
using a streamed processor. In that case, the host operating system re-
quires a working Python 3.11 environment with onnxruntime-gpu
support to run the local back-end service.

5.2. Results

The results produced by the participants in the experiments, includ-
ing the web application, were evaluated using the following approach.
9 
5.2.1. Matching criteria
Let 𝐴 be the time of first sighting of a turtle and 𝐵 the time of the 

last visible position of the turtle in a video: together, they identify the 
detected sighting window [𝐴,𝐵]. Let 𝐺𝐴 and 𝐺𝐵 be the points in time 
identifying the ground truth time window for a sighting [𝐺𝐴, 𝐺𝐵]. We 
define two matching criteria:

• Strict matching. A detected sighting [𝐴,𝐵] matches a ground 
truth sighting [𝐺𝐴, 𝐺𝐵] if 𝐴 ≥ 𝐺𝐴 and 𝐵 ≤ 𝐺𝐵 , meaning that 
the detected window is fully contained within the ground truth 
window.

• Relaxed matching. A detected sighting [𝐴,𝐵] matches a ground 
truth sighting [𝐺𝐴, 𝐺𝐵] if 𝐴 ≥ 𝐺𝐴 − 𝛥𝑡 and 𝐵 ≤ 𝐺𝐵 + 𝛥𝑡. 
This criterion accounts for minor temporal imprecision in the 
detected time windows by extending the ground truth window 
by 𝛥𝑡 on both sides. We set 𝛥𝑡 = 3 s as this represents the 
typical temporal error observed in expert annotations, where most 
experts correctly identified sighting windows but were off by at 
most 3 s on each end.

Each detected sighting is matched to the closest ground truth sight-
ing (if any) that satisfies the chosen criterion.

5.2.2. Evaluation metrics
Using the matching criteria defined above, we compute the follow-

ing metrics:

• Precision. The percentage of detected sightings that match a 
ground truth sighting. This measures the proportion of detections 
that are correct.

• Recall. The percentage of ground truth sightings that are matched 
by at least one detected sighting. This measures the proportion of 
actual turtle sightings that were successfully detected.

• Analysis time. The time that a participant used to analyse a given 
video and annotate the sightings, including the time taken to 
consult with other experts, if needed.

Both precision and recall are computed using strict and relaxed 
matching criteria, yielding four detection quality metrics in total.

The results of the evaluation are sketched in Table  4. In videos
DJI_0001, DJI_0002, and DJI_0003, the precision and recall of 
the PoC are comparable to those of the domain experts. For these 
videos, the analysis time of the system is similar to that taken by 
the other participants. The initial videos are simpler, featuring good 
sea conditions and easily identifiable turtles. The last three videos 
(DJI_0004, DJI_0028, DJI_0029) present increased complexity, 
which is reflected in the domain experts’ longer analysis time, while the 
PoC analysis time remains constant. This increased complexity makes 
it moderately more challenging for human experts to achieve perfect 
precision and recall. This results in misaligned detection windows and 
occasional identification errors, as highlighted by the fact that relaxed 
precision and recall are consistently higher than their strict counter-
parts for several experts. This is to be expected, given that domain 
experts have to manually pause the video and record the time. The last 
two videos are significantly more complex, featuring multiple turtles 
per frame and more challenging sea conditions. In these cases, the PoC 
exhibits substantially lower precision (0.33–0.44) than domain experts, 
due to a high false positive rate, though it maintains perfect recall 
(1.00) in DJI_0029 and reasonable recall (0.67) in DJI_0028. When 
naive filtering is applied, as discussed in Section 4.2, the filtered PoC’s 
precision improves dramatically to 0.82–0.92, becoming comparable to 
or exceeding that of the domain experts, while maintaining or even 
improving recall (0.93–1.00).

Although the potential for improvement may seem limited, the main 
benefit is that it reduces the need for domain experts to be present 
throughout the video processing stage. Their expertise can instead be 
focused on reviewing and validating the results afterwards. In this 
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Table 4
Proof of concept validation results: how the model and experts perform in terms of the accuracy and analysis time of sightings. The Turtle Count column refers 
to the number of turtles identified by the participant, including false positives.
 Video Participant Precision Recall Relaxed precision Relaxed recall Turtle count Ground truth Analysis time (s) 
 
DJI_0001

Expert 1 1.00 1.00 1.00 1.00 2 2 420  
 Expert 2 1.00 1.00 1.00 1.00 2 2 600  
 Expert 3 1.00 1.00 1.00 1.00 2 2 523  
 PoC 1.00 1.00 1.00 1.00 2 2 413  
 
DJI_0002

Expert 1 0.67 0.67 1.00 1.00 3 3 660  
 Expert 2 1.00 1.00 1.00 1.00 3 3 600  
 Expert 3 1.00 1.00 1.00 1.00 3 3 609  
 PoC 0.67 0.67 1.00 1.00 3 3 413  
 
DJI_0003

Expert 1 1.00 1.00 1.00 1.00 0 0 360  
 Expert 2 1.00 1.00 1.00 1.00 0 0 300  
 Expert 3 1.00 1.00 1.00 1.00 0 0 331  
 PoC 1.00 1.00 1.00 1.00 0 0 413  
 
DJI_0004

Expert 1 1.00 1.00 1.00 1.00 5 5 660  
 Expert 2 0.33 0.40 0.83 1.00 6 5 900  
 Expert 3 1.00 1.00 1.00 1.00 5 5 718  
 PoC 0.80 0.80 0.80 0.80 4 5 413  
 

DJI_0028

Expert 1 1.00 0.67 1.00 0.80 12 15 720  
 Expert 2 0.94 0.67 0.94 0.87 15 15 1080  
 Expert 3 1.00 1.00 1.00 1.00 15 15 948  
 PoC 0.33 0.67 0.39 0.56 20 15 413  
 PoC filtereda 0.82a 0.93a 0.82a 0.93a 18a 15 413  
 

DJI_0029

Expert 1 1.00 1.00 1.00 1.00 44 44 1200  
 Expert 2 1.00 0.73 1.00 0.89 39 44 1500  
 Expert 3 1.00 0.84 1.00 0.98 43 44 943  
 PoC 0.44 1.00 0.56 1.00 78 44 413  
 PoC filtereda 0.92a 1.00a 0.92a 1.00a 48a 44 413  
a PoC results obtained via the naive filter described in Section 4.2.
context, the domain experts emphasized that it is better to have a 
higher number of false positives than to miss actual turtle detections, 
since the former can be dismissed quickly, whereas the latter represents 
a missed conservation opportunity.

5.3. Limitations of the proposed approach

The use of the PoC revealed some potential limitations, which will 
be addressed as the technology matures and as part of future work for 
the platform:

• WebGPU browser maturity. Different web browsers have differ-
ent maturity levels of their WebGPU implementation and, due 
to this, the quality of the experience may vary across browser 
vendors and versions. The WebGPU implementation status across 
browsers is documented by the GPU for the web community 
group (W3C GPU for the Web Community Group, 2025). The PoC 
was tested with Firefox Nightly 140.0a1 (build ID 202505222
13939) and requires a dedicated GPU for in-browser inference.

• Inconsistent performance. When using in-browser processing, 
inference time heavily depends on the specifications of the ma-
chine being used and might differ from the results outlined in the 
previous sections. In contrast, cloud-based processing provides 
more consistent performance.

• High false-positives rate in complex videos. The output of the 
detection model is currently filtered by the simple mechanism 
described in Section 4.2. We believe that using object tracking 
algorithms will address this limitation.

• Video file size limitations. The maximum file size of a video file 
that can be processed by the web application is limited by the 
amount of RAM on the user machine and any browser-dependent 
restrictions. The video files used for our evaluation ranged from 
1.2 GB to 4.1 GB. We empirically found an optimal video file size 
to be around 2 GB.

• SRT flight telemetry limitations. While easier to access and 
process, the DJI SRT-based flight telemetry is recorded at 1 Hz, 
affecting synchronization accuracy, and lacks some of the data 
10 
points available in the more comprehensive DAT/TXT flight logs 
(e.g. orientation).

• Limited ecological generalizability. The models trained for our 
study are based on a limited dataset. Broader ecological validation 
of these models requires larger and more diverse training datasets.

6. Conclusions and future work

This paper details the development of a local-first web application 
designed to automatically assess sea turtle distribution and speed up 
the disambiguation process during manual reviews. We successfully 
collected, annotated, and reviewed extensive footage to create two dis-
tinct prototype datasets: one comprising frames from mixed altitudes, 
and one comprising frames taken at a standard height. State-of-the-
art models were then trained on these datasets. The best-performing 
models were exported to ONNX and seamlessly integrated into the 
web application. This enables researchers to process footage locally, 
leveraging their computational resources and eliminating the need 
for third-party cloud services. This work lays a solid foundation for 
future enhancements, including local model loading, post-processing 
refinement, replaying detection files over videos, generating statistical 
summaries, deployment on a public website.

Building on this foundational platform, we plan to conduct exten-
sive ecological validation in our upcoming data collection campaigns. 
This will include rigorous quantitative assessments demonstrating how 
the tool improves population estimates, habitat use analysis and be-
havioural interpretation. Such comprehensive validation will leverage 
the platform’s standardized approach to establish robust ecological 
benchmarks.

Furthermore, we intend to make additional pre-trained models 
available in the web application and provide users with guidance on 
which model to use, depending on their task. An intriguing aspect we 
plan to explore is enabling users to fine-tune models on their own 
datasets, an untapped possibility enabled by the latest technologies. 
Empowering experts to perform annotations within the browser and 
use their local hardware to fine-tune existing models would signifi-
cantly enhance the platform’s flexibility and adaptability to diverse 
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research contexts. As we continue to collect videos through ad hoc 
UAV campaigns, we will perform a more rigorous comparison of model 
architectures. These next steps will further enhance the application’s 
usability and impact in the field of sea turtle monitoring and con-
servation. In addition to our ongoing commitment to maintenance, 
we hope that opening the platform’s source code and granting a very 
permissive license (MIT) will seed a community that will contribute 
updates and new features. The open nature of the platform means that 
its use is not limited to sea turtle identification, but through scientists 
uploading their own models it can be used for research on other marine 
megafauna, such as cetaceans, and even other ecological contexts such 
as terrestrial ecological surveying.
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